精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在原点,焦点在轴,焦距为2,且长轴长是短轴长的倍.

1)求椭圆的标准方程;

2)设,过椭圆左焦点的直线两点,若对满足条件的任意直线,不等式)恒成立,求的最小值.

【答案】12的最小值为

【解析】

试题分析:1依题意,求出,可得椭圆的标准方程;2,可得,首先讨论当直线垂直于轴时

当直线不垂直于轴时设直线,与椭圆方程联立,得到

,则,将

代入可得,要使不等式)恒成立,只需,即的最小值为

试题解析:1)依题意,

解得椭圆的标准方程为

2)设所以

当直线垂直于轴时此时

所以

当直线不垂直于轴时设直线

整理得

所以

所以

要使不等式)恒成立,只需,即的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知关于的一次函数.

1)设集合,分别从集合中随机取一个数作为,求函数是增函数的概率;

2)实数满足条件,求函数的图象经过第一、二、三象限的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】衡州市英才中学贯彻党的教育方针,促进学生全面发展,积极组织开展了丰富多样的社团活动,根据调查,英才中学在传统民族文化的继承方面开设了“泥塑”、“剪纸”、“曲艺”三个社团,三个社团参加的人数如下表所示:

社团

泥塑

剪纸

曲艺

人数

320

240

200

为调查社团开展情况,学校社团管理部采用分层抽样的方法从中抽取一个容量为的样本,已知从“剪纸”社团抽取的同学比从“泥塑”社团抽取的同学少2人。

(1)求三个社团分别抽取了多少同学;

(2)若从“剪纸”社团抽取的同学中选出2人担任该社团活动监督的职务,已知“剪纸”社团被抽取的同学中有2名女生,求至少有1名女同学被选为监督职务的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某单位员工的月工资水平,从该单位500位员工中随机抽取了50位进行调查,得到如下频数分布表和频率分布直方图:

月工资

(单位:百元)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

男员工数

1

8

10

6

4

4

女员工数

4

2

5

4

1

1

(1) 试由上图估计该单位员工月平均工资;

(2)现用分层抽样的方法从月工资在的两组所调查的男员工中随机选取5人,问各应抽取多少人?

(3)若从月工资在两组所调查的女员工中随机选取2人,试求这2人月工资差不超过1000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海关对同时从三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.

地区

数量

50

150

100

1)求这6件样品中来自各地区商品的数量;

2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)当时,求在区间上的最值;

(2)讨论的单调性;

(3)当时,有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线经过点A (1,0).

(1)若直线与圆C相切,求直线的方程;

(2)若直线与圆C相交于PQ两点,求三角形CPQ面积的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线l的方程为(a+1)x+y+2-a=0(aR).

1若l在两坐标轴上的截距相等,求l的方程;

2若l不经过第二象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且N*

1求数列的通项公式;

2已知N*,记,是否存在这样的常数,使得数列是常数列,若存在,求出的值;若不存在,请说明理由.

3若数列,对于任意的正整数,均有

成立,求证:数列是等差数列.

查看答案和解析>>

同步练习册答案