精英家教网 > 高中数学 > 题目详情

【题目】函数.

(1)当时,求在区间上的最值;

(2)讨论的单调性;

(3)当时,有恒成立,求的取值范围.

【答案】12)当时,递增;当时,递增,在上递减.当时,递减.(3

【解析】试题分析:(1)的最值只能在和区间的两个端点取到,因此,通过算出上述点并比较其函数值可得函数的最值;(2)算出,对的取值范围分情况讨论即可;(3)根据(2)中得到的单调性化简不等式,从而求解不等式,解得的取值范围.

试题解析:(1)当时,,∴

的定义域为,∴由,得.……………………2分

在区间上的最值只可能在取到,

,……4分

(2)

①当,即时,,∴上单调递减;……5分

②当时,,∴上单调递增;…………………………6分

③当时,由,∴(舍去)

上单调递增,在上单调递减;……………………8分

综上,当时,单调递增;

时,单调递增,在上单调递减.

时,单调递减;

(3)由(2)知,当时,

即原不等式等价于,…………………………12分

,整理得

,………………13分

又∵,∴的取值范围为.……………………14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2-a-lnx,其中aR.

)讨论f(x)的单调性;

)当时,恒成立,求a的取值范围.(其中,e=2.718为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

其中,若函数,且它的最小正周期为

(普通中学只做1,2问)

(1)求的值,并求出函数的单调递增区间;

(2)当(其中)时,记函数的最大值与最小值分

别为,设,求函数的解

析式;

(3)在第(2)问的前提下,已知函数 ,若对于任意 ,总存在,使得

成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为 ,点在椭圆上.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)是否存在斜率为2的直线,使得当直线与椭圆有两个不同交点时,能在直线上找到一点,在椭圆上找到一点,满足?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴,焦距为2,且长轴长是短轴长的倍.

1)求椭圆的标准方程;

2)设,过椭圆左焦点的直线两点,若对满足条件的任意直线,不等式)恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本题满分14本题共有2个小题,第1小题满分6分,第2小题满分8

沙漏是古代的一种时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细通过连接管道全部到下部容器所需要的时间称为该沙漏的一个沙时。如图,某沙漏由上下两个圆锥组成圆锥的底面直径和高均为8cm细沙全部在上部时高度为圆锥高度的细管长忽略不

1如果该沙漏每秒钟漏下0.02cm3的沙,则该沙漏的一个沙时为多少秒精确1秒

2全部漏入下部恰好堆成一盖沙漏底的圆锥形沙求此锥形高度精确0.1cm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:

组号

第一组

第二组

第三组

第四组

第五组

分组

[5060

[6070

[7080

[8090

[90100]

1)求图中a的值;

2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;

3)现用分层抽样的方法从第345组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】条件;条件:直线与圆相切,则的( )

A. 充分必要条件 B. 必要不充分条件

C. 充分不必要条件 D. 既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体ABCD—A1B1C1D1中,

MN分别是AB1BC1的中点.

(Ⅰ)求证:直线MN//平面ABCD.

(Ⅱ)求B1到平面A1BC1的距离.

查看答案和解析>>

同步练习册答案