精英家教网 > 高中数学 > 题目详情

【题目】椭圆的左顶点为,右焦点为,上顶点为,下顶点为,若直线与直线的交点为

(1)求椭圆的标准方程;

(2)点为椭圆的长轴上的一个动点,过点且斜率为的直线交椭圆两点,证明:为定值.

【答案】见解析

【解析】(1)由椭圆的左顶点的坐标为,上下顶点的坐标为,右焦点为,则直线的方程为,直线的方程为,又因为直线与直线的交点为,把点分别代入直线的方程,解得,又因为,解得,所以椭圆的标准方程为............4分

(2)设的方程为,代入并整理得:.....6分

,则

又因为,同理..............8分

所以是定值.................................12分

【命题意图】本题考查椭圆的标准方程,定值问题,直线与圆锥曲线的位置关系等基础知识,意在考查转化与化归能力,综合分析问题和解决问题的能力及基本运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角αβ,它们的终边分别与单位圆相交于AB两点,已知AB的横坐标分别为 .求:

1tan(αβ)的值;

2α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问110名不同的大学生是否爱好某项运动,利用列联表,由计算可得

PK2>k

010

005

0025

0010

0005

0001

k

2706

3841

5024

6635

7879

10828

参照附表,得到的正确结论是( )

A.有995%以上的把握认为爱好该项运动与性别无关

B.有995%以上的把握认为爱好该项运动与性别有关

C.在犯错误的概率不超过005%的前提下,认为爱好该项运动与性别有关

D.在犯错误的概率不超过005%的前提下,认为爱好该项运动与性别无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题

某地市高三理科学生有15000名,在一次调研测试中,数学成绩服从正态分布,已知,若按成绩分层抽样的方式取100份试卷进行分析,则应从120分以上(包括120分)的试卷中抽取

已知命题,则

上随机取一个数,能使函数上有零点的概率为

,则的充要条件.

其中真命题的序号 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sna11Sn2an1,则Sn( )

A. 2n1 B. n1 C. n1 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:

(1)求的值;

(2)求证:数列是等比数列;

(3)令),如果对任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列{an}满足log2a1+log2a2+…+log2a2009=2009,则log2(a1+a2009)的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速在[50,70)的汽车大约(
A.60辆
B.80辆
C.100辆
D.120辆

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x2﹣2x﹣3|,若a<b<1,且f(a)=f(b),则u=2a+b的最小值为

查看答案和解析>>

同步练习册答案