4£®±¾×Ž¡¿µ¡¢µÍ̼µÄÉú»îÀíÄ×âÓù«¹²×ÔÐгµµÄÈËÔ½À´Ô½¶à£®×âÓù«¹²×ÔÐгµµÄÊշѱê×¼ÊÇÿ³µÃ¿´Î²»³¬¹ýÁ½Ð¡Ê±Ãâ·Ñ£¬³¬¹ýÁ½Ð¡Ê±µÄ²¿·ÖÿСʱ2Ôª£¨²»×ã1СʱµÄ²¿·Ö°´1Сʱ¼ÆË㣩£®¼×ÒÒÁ½ÈËÏ໥¶ÀÁ¢×â³µ£¨¸÷×âÒ»³µÒ»´Î£©£®Éè¼×¡¢ÒÒ²»³¬¹ýÁ½Ð¡Ê±»¹³µµÄ¸ÅÂÊ·Ö±ðΪ$\frac{1}{3}$£¬$\frac{1}{2}$£»Á½Ð¡Ê±ÒÔÉÏÇÒ²»³¬¹ýÈýСʱ»¹³µµÄ¸ÅÂÊ·Ö±ðΪ$\frac{1}{3}$£¬$\frac{1}{4}$£»Á½ÈË×⳵ʱ¼ä¶¼²»»á³¬¹ýËÄСʱ£®
£¨1£©Çó³ö¼×¡¢ÒÒËù¸¶×â³µ·ÑÓÃÏàͬµÄ¸ÅÂÊ£»
£¨2£©Éè¼×¡¢ÒÒÁ½ÈËËù¸¶µÄ×â³µ·ÑÓÃÖ®ºÍÎªËæ»ú±äÁ¿X£¬ÇóËæ»ú±äÁ¿XµÄ¸ÅÂÊ·Ö²¼ºÍÆÚÍû£®

·ÖÎö £¨1£©¸ù¾Ý»¥³âʼþµÄ¸ÅÂʼÆË㹫ʽÇó³ö¶ÔÓ¦µÄ¸ÅÂÊÖµ£»
£¨2£©¸ù¾ÝÌâÒâÖªXµÄȡֵ£¬Çó³ö¶ÔÓ¦µÄ¸ÅÂÊ£¬Ð´³ö·Ö²¼ÁУ¬¼ÆËãÊýѧÆÚÍûÖµ£®

½â´ð ½â£º£¨1£©¼×¡¢ÒÒËù¸¶·ÑÓÃÏàͬʱ£¬Îª0£¬2£¬4Ôª£¬
ËùÇóµÄ¸ÅÂÊΪ$P=\frac{1}{3}¡Á\frac{1}{2}+\frac{1}{3}¡Á\frac{1}{4}+\frac{1}{3}¡Á\frac{1}{4}=\frac{1}{3}$£»
£¨2£©¸ù¾ÝÌâÒ⣬XµÄȡֵΪ0£¬2£¬4£¬6£¬8£¬
Ôò$P£¨X=0£©=\frac{1}{3}¡Á\frac{1}{2}=\frac{1}{6}$£¬
$P£¨X=2£©=\frac{1}{3}¡Á\frac{1}{2}+\frac{1}{3}¡Á\frac{1}{4}=\frac{1}{4}$£¬
$P£¨X=4£©=\frac{1}{3}¡Á\frac{1}{4}+\frac{1}{3}¡Á\frac{1}{2}+\frac{1}{3}¡Á\frac{1}{4}=\frac{1}{3}$£¬
$P£¨X=6£©=\frac{1}{3}¡Á\frac{1}{4}+\frac{1}{3}¡Á\frac{1}{4}=\frac{1}{6}$£¬
$P£¨X=8£©=\frac{1}{3}¡Á\frac{1}{4}=\frac{1}{12}$£»
ÔòXµÄ·Ö²¼ÁÐΪ£º

X02468
P$\frac{1}{6}$$\frac{1}{4}$$\frac{1}{3}$$\frac{1}{6}$$\frac{1}{12}$
ÊýѧÆÚÍûΪE£¨X£©=0¡Á$\frac{1}{6}$+2¡Á$\frac{1}{4}$+4¡Á$\frac{1}{3}$+6¡Á$\frac{1}{6}$+8¡Á$\frac{1}{12}$=$\frac{7}{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˹ŵä¸ÅÐ͵ĸÅÂÊÒÔ¼°Ëæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûÎÊÌ⣬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÏÂÁнáÂÛ²»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
¢Ù.$\frac{1}{{{2^{10}}}}+\frac{1}{{{2^{10}}+1}}+\frac{1}{{{2^{10}}+2}}+¡­+\frac{1}{{{2^{11}}-1}}£¾1$
¢ÚÈô|a|£¼1£¬Ôò|a+b|-|a-b|£¾2
¢Ûlg9•lg11£¼1
¢ÜÈôx£¾0£¬y£¾0£¬Ôò$\frac{x+y}{1+x+y}£¼\frac{x}{1+x}+\frac{y}{1+y}$£®
A£®¢Ù¢ÚB£®¢Ù¢Ú¢ÛC£®¢Ù¢Ú¢ÜD£®¢Ù¢Û

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßy=x2-6x+1Óë×ø±êÖáµÄ½»µã¶¼ÔÚÔ²CÉÏ£¬
£¨1£©ÇóÔ²CµÄ·½³Ì£»
£¨2£©Çó¹ý¶¨µã£¨2£¬3£©ÓëÔ²ÏཻËù½ØµÃµÄÏÒ³¤Îª$4\sqrt{2}$µÄÖ±Ïß·½³Ì£»
£¨3£©ÈôÔ²CÓëÖ±Ïßx-y+a=0½»ÓÚA£¬BÁ½µã£¬ÇÒOA¡ÍOB£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªÈý¸ö¸´Êýz1£¬z2£¬z3£¬²¢ÇÒ|z1|=|z2|=|z3|=1£¬z1£¬z2Ëù¶ÔÓ¦µÄÏòÁ¿$\overrightarrow{o{z}_{1}}$£¬$\overrightarrow{o{z}_{2}}$Âú×ã$\overrightarrow{o{z}_{1}}$•$\overrightarrow{o{z}_{2}}$=0£¬Ôò|z1+z2-z3|µÄȡֵ·¶Î§ÊÇ[$\sqrt{2}-1$£¬$\sqrt{2}+1$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®½«4ÃûÖ¾Ô¸ÕßÈ«²¿·ÖÅäµ½Èý¸ö²»Í¬µÄ³¡¹Ý²Î¼Ó½Ó´ý¹¤×÷£¬Ã¿¸ö³¡¹ÝÖÁÉÙ·ÖÅäÒ»ÃûÖ¾Ô¸Õߵķ½°¸×ÜÊýΪ£¨¡¡¡¡£©
A£®18B£®24C£®36D£®72

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÇóÏÂÁк¯ÊýµÄµ¼Êý
£¨1£©y=£¨2x2+3£©£¨3x-1£©£»       
 £¨2£©y=xex+2x+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦Â}\\{y=sin¦Â}\end{array}\right.$ £¨¦ÂΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È
£¨1£©½«C1µÄ·½³Ì»¯ÎªÆÕͨ·½³Ì£¬½«C2µÄ·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$ £¨$\frac{¦Ð}{2}$£¼¦Á£¼¦Ð£¬tΪ²ÎÊý£¬ÇÒt¡Ù0£©£¬lÓëC1½»ÓÚµãA£¬lÓëC2½»ÓÚµãB£¬ÇÒ|AB|=$\sqrt{3}$£¬Çó¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªiÊÇÐéÊýµ¥Î»£¬a£¬b¡ÊR£¬Ôò¡°a=b=2¡±ÊÇ¡°£¨a+bi£©2=8i¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®  ÒÑÖªº¯Êýf£¨x£©=ax3+bx2+cxÔÚµãx0´¦È¡µÃ¼«´óÖµ5£¬Æäµ¼º¯Êýy=f'£¨x£©µÄͼÏóÈçͼËùʾ£¬ÇÒ¾­¹ýµã£¨1£¬0£©£¬£¨2£¬0£©£®
£¨1£©Çóx0µÄÖµÒÔ¼°f£¨x£©µÄ½âÎöʽ£»
£¨2£©Èô·½³Ìf£¨x£©-m=0Ç¡ÓÐ2¸ö¸ù£¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸