精英家教网 > 高中数学 > 题目详情
9.某省数学学业水平考试成绩分为A、B、C、D四个等级,在学业水平成绩公布后,从该省某地区考生中随机抽取60名考生,统计他们的数学成绩,部分数据如下:
等级ABCD
频数2412
频率0.1
(Ⅰ)补充完成上述表格中的数据;
(Ⅱ)现按上述四个等级,用分层抽样的方法从这60名考生中抽取10名,在这10名考生中,从成绩A等和B等的所有考生中随机抽取2名,求至少有一名成绩为A等的概率.

分析 (Ⅰ)根据频率=$\frac{频数}{样本容量}$,即可求出相应数据,
(Ⅱ)用分层抽样可得A、B分别抽取到的人数为4人、3人,列举可得总的基本事件共21个,由概率公式可得.

解答 解:(Ⅰ)

等级ABCD
频数2418126
频率0.40.30.20.1
(Ⅱ)成绩为A的考生应抽$\frac{24}{60}$×10=4名,分别记为A,B,C,D,
成绩为B的考生应抽$\frac{18}{60}$×10=3名,记为a,b,c,
从这7名中抽取2名,有21种抽法,分别为AB,AC,AD,Aa,Ab,Ac,BC,BD,Ba,Bb,Bc,CD,Ca,Cb,Cc,Da,Db,Dc,ab,ac,bc,其中成绩全为B的有3抽法,
故至少有一名成绩为A等的概率为P=1-$\frac{3}{21}$=$\frac{6}{7}$

点评 本题考查列举法计算基本事件数及事件发生的概率,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$=(-2,3),$\overrightarrow{b}$∥$\overrightarrow{a}$,向量$\overrightarrow{b}$的起点为A(1,2),终点B在坐标轴上,则点B的坐标为($\frac{7}{3}$,0)或(0,$\frac{7}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.对于函数y=f(x),若存在定义域D内某个区间[a,b],使得y=f(x)在[a,b]上的值域也是[a,b],则称函数y=f(x)在定义域D上封闭,如果函数f(x)=$\frac{kx}{1+{x}^{2}}$(k≠0)在R上封闭,那么实数k的取值范围是(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知?x0∈R使得关于x的不等式|x-1|-|x-2|≥t成立.
(Ⅰ)求满足条件的实数t集合T;
(Ⅱ)若m>1,n>1,且对于?t∈T,不等式log3m•log3n≥t恒成立,试求m+n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若x,y满足约束条件$\left\{\begin{array}{l}{2x-y≥0}\\{x-y≤0}\\{x+y-3≥0}\\{\;}\end{array}\right.$,则z=2x+y的最小值是(  )
A.5B.$\frac{9}{2}$C.4D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow a=(2,-3),\overrightarrow b=(3,2)$,则$\overrightarrow a$与$\overrightarrow b$(  )
A.平行且同向B.垂直C.不垂直也不平行D.平行且反向

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知复数z1=a-2i,z2=2+i(i为虚数单位),若$\frac{{z}_{1}}{{z}_{2}}$为纯虚数,则实数a的值为(  )
A.-4B.-1C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC的内角A,B,C的对边分别是a,b,c,若b2=ac,c=2a,则cosC=(  )
A.$\frac{{\sqrt{2}}}{4}$B.$-\frac{{\sqrt{2}}}{4}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在平行四边形ABCD中,F是CD的中点,AF与BD交于E,求证:E为线段BD的三等分.

查看答案和解析>>

同步练习册答案