精英家教网 > 高中数学 > 题目详情
1.已知复数z1=a-2i,z2=2+i(i为虚数单位),若$\frac{{z}_{1}}{{z}_{2}}$为纯虚数,则实数a的值为(  )
A.-4B.-1C.1D.4

分析 直接把z1=a-2i,z2=2+i代入$\frac{{z}_{1}}{{z}_{2}}$,然后利用复数代数形式的乘除运算化简,又已知$\frac{{z}_{1}}{{z}_{2}}$为纯虚数列出方程,求解即可得答案.

解答 解:由复数z1=a-2i,z2=2+i,
则$\frac{{z}_{1}}{{z}_{2}}$=$\frac{a-2i}{2+i}=\frac{(a-2i)(2-i)}{(2+i)(2-i)}=\frac{2a-2-(a+4)i}{5}$=$\frac{2a-2}{5}-\frac{a+4}{5}i$,
∵$\frac{{z}_{1}}{{z}_{2}}$为纯虚数,
∴$\left\{\begin{array}{l}{\frac{2a-2}{5}=0}\\{-\frac{a+4}{5}≠0}\end{array}\right.$,
解得a=1.
故选:C.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,P是C的右支上的点,射线PT平分∠F1PF2,过原点O作PT的平行线交PF1于点M,若|MP|=$\frac{1}{5}$|F1F2|,则C的离心率为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=sin(ωx+φ),其中$ω>0,|φ|<\frac{π}{2},x∈R$,两相邻对称轴的距离为$\frac{π}{2}$,$f({\frac{π}{6}})$为最大值,则函数f(x)在区间[0,π]上的单调增区间为(  )
A.$[{0,\frac{π}{6}}]$B.$[{\frac{2π}{3},π}]$C.$[{0,\frac{π}{6}}]$和$[{\frac{π}{3},π}]$D.$[{0,\frac{π}{6}}]$和$[{\frac{2π}{3},π}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某省数学学业水平考试成绩分为A、B、C、D四个等级,在学业水平成绩公布后,从该省某地区考生中随机抽取60名考生,统计他们的数学成绩,部分数据如下:
等级ABCD
频数2412
频率0.1
(Ⅰ)补充完成上述表格中的数据;
(Ⅱ)现按上述四个等级,用分层抽样的方法从这60名考生中抽取10名,在这10名考生中,从成绩A等和B等的所有考生中随机抽取2名,求至少有一名成绩为A等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知不等式组$\left\{\begin{array}{l}x-2y+1≥0\\ x≤3\\ x+y-1≥0\end{array}\right.$表示的平面区域为D,若函数y=|x-2|+m的图象上存在区域D上的点,则实数m的取值范围是(  )
A.[-3,1]B.$[-3,\frac{3}{2}]$C.$[-1,\frac{3}{2}]$D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的中位数是83,乙班学生成绩的平均数是86,则x+y的值为(  )
A.168B.169C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,内角A,B,C所对的边分别为a,b,c,且BC边上的高为$\frac{{\sqrt{3}}}{2}a$,则$\frac{c}{b}+\frac{b}{c}$取得最大值时,内角A的值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知非零向量$\overrightarrow{a}$=(m2-1,m+1)与向量$\overrightarrow{b}$=(1,-2)平行,则实数m的值为(  )
A.-1或$\frac{1}{2}$B.1或$-\frac{1}{2}$C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.化简:$\sqrt{1-sin2}$=(  )
A.sin1°-cos1°B.cos1°-sin1°C.sin1-cos1D.cos1-sin1

查看答案和解析>>

同步练习册答案