| A. | $[{0,\frac{π}{6}}]$ | B. | $[{\frac{2π}{3},π}]$ | C. | $[{0,\frac{π}{6}}]$和$[{\frac{π}{3},π}]$ | D. | $[{0,\frac{π}{6}}]$和$[{\frac{2π}{3},π}]$ |
分析 根据题意,求出函数f(x)的函数解析式,再求函数f(x)在区间[0,π]上的单调增区间即可.
解答 解:∵函数f(x)=sin(ωx+φ)相邻对称轴的距离为$\frac{π}{2}$,
∴$\frac{T}{2}$=$\frac{π}{2}$,解得T=π,∴ω=2;
又$f({\frac{π}{6}})$为最大值,
令2×$\frac{π}{6}$+φ=$\frac{π}{2}$+2kπ,k∈Z,
解得φ=$\frac{π}{6}$+kπ,k∈Z,
∴取φ=$\frac{π}{6}$,
∴函数f(x)=sin(2x+$\frac{π}{6}$);
令-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z,
解得-$\frac{π}{3}$+kπ≤x≤$\frac{π}{6}$+kπ,k∈Z,
当k=0时,x∈[-$\frac{π}{3}$,$\frac{π}{6}$],当k=1时,x∈[$\frac{2π}{3}$,$\frac{7π}{6}$],
∴f(x)在区间[0,π]上的单调增区间为[0,$\frac{π}{6}$]和[$\frac{2π}{3}$,π].
故选:D.
点评 本题考查了正弦函数的图象与性质的应用问题,也考查了数形结合思想的应用问题,是基础题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | $\frac{9}{2}$ | C. | 4 | D. | $\frac{7}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | -1 | C. | 1 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4个 | B. | 6个 | C. | 8个 | D. | 10个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com