精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=1,an+1=
an
1+an
(n∈N+
(1)分别求a2,a3,a4的值.
(2)猜想{an}的通项公式an,并用数学归纳法证明.
考点:数学归纳法,数列递推式
专题:综合题,点列、递归数列与数学归纳法
分析:(1)利用已知条件通过n=2,3,4,直接计算a2,a3,a4的值,
(2)根据(1)的计算结果,猜想的通{an}项公式,用数学归纳法的证明步骤直接证明即可.
解答: 解:(1)a2=
a1
1+a1
=
1
2
a3=
a2
1+a2
=
1
2
1+
1
2
=
1
3
a4=
a3
1+a3
=
1
3
1+
1
3
=
1
4
…(3分)
(2)猜想an=
1
n
(n∈N+)
…(5分)
①当n=1时命题显然成立
②假设n=k(k∈N*)命题成立,即ak=
1
k

当n=k+1时,ak+1=
ak
1+ak
=
1
k+1
…(7分)
∴n=k+1时命题成立
综合①②当n∈N*时命题成立…(10分)
点评:本题考查数列递推关系式以及通项公式的应用,数学归纳法的证明方法的应用,考查计算能力与逻辑推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=3sinx+2cosx的最小值是(  )
A、0
B、-3
C、-5
D、-
13

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sin(3x+
π
6
)的图象向左平移
π
6
个单位,再将所得图象上所有点的横坐标缩短到原来的
1
2
倍(纵坐标不变),则所得图象的函数解析式为(  )
A、y=sin(
3
2
x+
3
B、y=sin(6x+
π
3
C、y=sin6x
D、y=sin(6x+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学为研究学生的身体素质与课外体育锻炼时间的关系,对400名高一学生的一周课外体育锻炼时间进行调查,结果如下表所示:
锻炼时间(分钟) [0,20) [20,40) [40,60) [60,80) [80,100) [100,120]
人数 40 60 80 100 80 40
(1)完成频率分布直方图,并估计该中学高一学生每周参加课外体育锻炼时间的平均值(同一组中的数据用该区间的组中值作代表);
(2)现采用分层抽样的方法抽取容量为20的样本,
①应抽取多少名课外体育锻炼时间为[40,80]分钟的学生;
②若从①中被抽取的学生中随机抽取2名,求这2名学生课外体育锻炼时间均为[40,60]分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,D为BC中点.
(Ⅰ) 求异面直线CB1与C1A1所成的角余弦值.
(Ⅱ) 求证:A1B∥平面ADC1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=
3
,SE⊥AD.
(Ⅰ)证明:BE⊥平面SEC;
(Ⅱ)若SE=1,求直线CE与平面SBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点F1与中心在原点的椭圆C的右焦点重合,且椭圆C过点(1,
2
2
).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点F1作直线l与椭圆C交于A、B两点,且点T是x轴上的一点,横坐标为2,求|
TA
+
TB
|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{xn},满足x1=4,xn+1=
xn
2
+
2
xn
,an=lg
xn+2
xn-2

(1)证明:数列{an}成等比数列,并求数列{xn}的通项公式;
(2)若bn=xn-2,Tn是数列{bn}的前n项和,证明:Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F1,右焦点为F2,过F1的直线交椭圆于A,B两点,△ABF2的周长为4
2
,且△AF1F2面积最大时,△AF1F2为直角三角形.
(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=2相交于点Q,证明:点M(1,0)在以PQ为直径的圆上;
(3)试问,是否存在x轴上的点T(t,0),使得
TA
TB
为定值,若存在,求出T点的坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案