精英家教网 > 高中数学 > 题目详情
已知数列{xn},满足x1=4,xn+1=
xn
2
+
2
xn
,an=lg
xn+2
xn-2

(1)证明:数列{an}成等比数列,并求数列{xn}的通项公式;
(2)若bn=xn-2,Tn是数列{bn}的前n项和,证明:Tn<3.
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列,不等式的解法及应用
分析:(1)由数列递推式xn+1=
xn
2
+
2
xn
得到
xn+1+2
xn+1-2
=(
xn+2
xn-2
)2
,借助于对数的运算性质得到数列{an}成等比数列,进一步求得数列{xn}的通项公式;
(2)把数列{xn}的通项公式代入bn=xn-2,求得bn>0,结合
bn+1
bn
1
3
放缩证得Tn<3.
解答: 证明:(1)由xn+1=
xn
2
+
2
xn
,知xn+1+2=
xn
2
+
2
xn
+2=
(xn+2)2
2xn

同理xn+1-2=
(xn-2)2
2xn

xn+1+2
xn+1-2
=(
xn+2
xn-2
)2
,从而lg
xn+1+2
xn+1-2
=2lg
xn+2
xn-2

即an+1=2an
∴数列{an}成等比数列,
an=2n-1a1=2n-1lg
x1+2
x1-2
=2n-1lg3.
lg
xn+2
xn-2
=2n-1lg3

从而
xn+2
xn-2
=32n-1

xn=
2(32n-1+1)
32n-1-1

(2)由(1)知xn=
2(32n-1+1)
32n-1-1

bn=xn-2=
4
32n-1-1
>0

bn+1
bn
=
32n-1-1
32n-1
=
1
32n-1+1
1
32n-1
1
321-1
=
1
3

当n=1时,显然T1=b1=2<3;
当n>1时,bn
1
3
bn-1<(
1
3
)2bn-2<…<(
1
3
)n-1b1

Tn=b1+b2+…+bnb1+
1
3
b1+…+(
1
3
)n-1b1

=
b1[1-(
1
3
)n]
1-
1
3
=3-(
1
3
)n-1<3

综上,Tn<3.
点评:本题考查了数列递推式,考查了利用放缩法证明数列不等式,综合考查了学生的逻辑思维能力和灵活处理问题的能力,是中高档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下面几种推理中是演绎推理的序号为(  )
A、半径为r圆的面积S=πr2,则单位圆的面积S=π
B、由金、银、铜、铁可导电,猜想:金属都可导电
C、由平面三角形的性质,推测空间四面体性质
D、由平面直角坐标系中圆的方程为(x-a)2+(y-b)2=r2,推测空间直角坐标系中球的方程为(x-a)2+(y-b)2+(z-c)2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1=
an
1+an
(n∈N+
(1)分别求a2,a3,a4的值.
(2)猜想{an}的通项公式an,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C上的动点P是坐标为(
3
cosθ,
2
sinθ).
(1)求曲线C的普通方程,并指出曲线的类型及焦点坐标;
(2)过点Q(2,1)作曲线C的两条切线l1、l2,证明l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:

判断函数g(x)=
1
2
x2+1(x>0)
-
1
2
x2-1(x<0)
的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=3cos2x,(x∈R)的最大值及f(x)取得最大值时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

多面体ABCDEF中,M、N分别为EC、AB的中点,底面ABCD为菱形,且∠BAD=
60°,ED⊥平面ABCD,ED∥BF,且ED=AD=2BF=2.
(Ⅰ)求证:MN∥平面BCF;
(Ⅱ)求二面角A-EF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体ABCD中,平面ABC⊥平面BCD,AC=AB,CB=CD,∠DCB=120°.点E在BD上,且DE=
1
3
DB.
(Ⅰ)求证:AB⊥CE;
(Ⅱ)若AC=CE,求二面角A-CD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=2px的一个焦点与椭圆
x2
6
+
y2
2
=1的右焦点重合,
(1)求P的值;
(2)若点P(2,4)是抛物线上一点,点F为抛物线的焦点,求线段PF的长.

查看答案和解析>>

同步练习册答案