精英家教网 > 高中数学 > 题目详情
如图,四面体ABCD中,平面ABC⊥平面BCD,AC=AB,CB=CD,∠DCB=120°.点E在BD上,且DE=
1
3
DB.
(Ⅰ)求证:AB⊥CE;
(Ⅱ)若AC=CE,求二面角A-CD-B的余弦值.
考点:与二面角有关的立体几何综合题,棱锥的结构特征
专题:空间位置关系与距离,空间角
分析:(Ⅰ)设DE=a,由已知条件利用余弦定理求出CD=
3
a
,CE=a,从而得到∠BCE=90°,由此能证明EC⊥平面ABC,从而得到EC⊥AB.
(Ⅱ)取BC中点O,BE中点F,以O为原点建立如图所示的空间直角坐标系o-xyz,利用向量法能求出二面角A-CD-B的余弦值.
解答: (Ⅰ)证明:△DCB中,CB=CD,∠DCB=120°,
∴∠CDB=30°,设DE=a,∵DE=
1
3
DB.∴BD=3a,解得CD=
3
a

在△CDE中,由余弦定理,得:CE=
3a2+a2-2
3
a2•cos30°
=a,
∴∠DCE=30°,∴∠BCE=90°,∴EC⊥BC,
∵平面ABC⊥平面BCD,交线为BC,
∴EC⊥平面ABC,∴EC⊥AB.
(Ⅱ)解:取BC中点O,BE中点F,连结OA,OF,
∵AC=AB,∴AO⊥BC,
∵平面ABC⊥平面BCD,交线为BC,
∴AO⊥平面BCD,
∵O是BC中点,F是BE中点,
∴OF∥EC,由(1)知,EC⊥BC,∴OF⊥BC,
以O为原点建立如图所示的空间直角坐标系o-xyz,
设DE=2,得A(0,0,1),B(0,
3
,0),
C(0,-
3
,0),D(3,-2
3
,0),
AC
=(0,-
3
,-1)
CD
=(3,-
3
,0)

设平面ACD的法向量
n1
=(1,
3
,-3),
又平面BCD的法向量
n2
=(0,0,1),
∴cos<
n1
n2
>=
-3
13
=-
3
13
13

∴二面角A-CD-B的余弦值为
3
13
13
点评:本题考查异面直线垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某中学为研究学生的身体素质与课外体育锻炼时间的关系,对400名高一学生的一周课外体育锻炼时间进行调查,结果如下表所示:
锻炼时间(分钟) [0,20) [20,40) [40,60) [60,80) [80,100) [100,120]
人数 40 60 80 100 80 40
(1)完成频率分布直方图,并估计该中学高一学生每周参加课外体育锻炼时间的平均值(同一组中的数据用该区间的组中值作代表);
(2)现采用分层抽样的方法抽取容量为20的样本,
①应抽取多少名课外体育锻炼时间为[40,80]分钟的学生;
②若从①中被抽取的学生中随机抽取2名,求这2名学生课外体育锻炼时间均为[40,60]分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{xn},满足x1=4,xn+1=
xn
2
+
2
xn
,an=lg
xn+2
xn-2

(1)证明:数列{an}成等比数列,并求数列{xn}的通项公式;
(2)若bn=xn-2,Tn是数列{bn}的前n项和,证明:Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥CD,且PA=2,E为PD中点.
(1)求证:PA⊥平面ABCD;   
(2)求二面角E-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校50名学生在一次科普知识竞赛中,初赛成绩全部介于60与100之间,将初赛成绩按如下方式分成四组:第一组[60,70],第二组[70,80],…,第四组[90,100].如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)求成绩在[80,90]范围内的人数;
(Ⅱ)决赛规则如下:为每位参加决赛的选手准备4道判断题,选手对其依次回答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对l道,则获得二等奖,否则获得三等奖.某同学进入决赛,每道题答对的概率p的值恰好与成绩不少于80分的频率值相同.
(i)求该同学恰好答满4道题而获得一等奖的概率;
(ii)设该同学决赛中答题个数为X,求X的分布列及X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,满足an=
Sn
n(2n-1)
,且a1=
1
3

(Ⅰ)求a2,a3,a4
(Ⅱ)猜想数列{an}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F1,右焦点为F2,过F1的直线交椭圆于A,B两点,△ABF2的周长为4
2
,且△AF1F2面积最大时,△AF1F2为直角三角形.
(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=2相交于点Q,证明:点M(1,0)在以PQ为直径的圆上;
(3)试问,是否存在x轴上的点T(t,0),使得
TA
TB
为定值,若存在,求出T点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x=|a|,a∈R且a≠0},B={y|y=|b-1998|,b∈R},求证:A?B.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥E-ABCD中,底面ABCD是正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.
(1)求证:DE∥平面ACF;
(2)若AB=
2
CE,在线段EO上是否存在点G,使CG⊥平面BDE?若存在,求出
EG
EO
的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案