精英家教网 > 高中数学 > 题目详情
若抛物线y2=2px的一个焦点与椭圆
x2
6
+
y2
2
=1的右焦点重合,
(1)求P的值;
(2)若点P(2,4)是抛物线上一点,点F为抛物线的焦点,求线段PF的长.
考点:直线与圆锥曲线的综合问题
专题:计算题,圆锥曲线的定义、性质与方程
分析:(1)可求抛物线的焦点坐标,即椭圆焦点坐标,从而可得
p
2

(2)由抛物线定义可求.
解答: 解:(1)∵椭圆
x2
6
+
y2
2
=1

∴a2=6,b2=2,则c=2,
∴椭圆的右焦点坐标为(2,0),
则抛物线的焦点坐标为(2,0),
故有
p
2
=2
,p=4;
(2)由(1)得:抛物线的方程为y2=8x,点P(2,4),抛物线的焦点坐标为(2,0),
由抛物线的定义得|PF|=x0+
p
2
=2+
4
2
=4.
点评:该题考查抛物线的方程、性质,考查直线与抛物线的位置关系,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{xn},满足x1=4,xn+1=
xn
2
+
2
xn
,an=lg
xn+2
xn-2

(1)证明:数列{an}成等比数列,并求数列{xn}的通项公式;
(2)若bn=xn-2,Tn是数列{bn}的前n项和,证明:Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F1,右焦点为F2,过F1的直线交椭圆于A,B两点,△ABF2的周长为4
2
,且△AF1F2面积最大时,△AF1F2为直角三角形.
(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=2相交于点Q,证明:点M(1,0)在以PQ为直径的圆上;
(3)试问,是否存在x轴上的点T(t,0),使得
TA
TB
为定值,若存在,求出T点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x=|a|,a∈R且a≠0},B={y|y=|b-1998|,b∈R},求证:A?B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a4=5,a7=11.求数列{an}的通项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右顶点分别为A(-2,0),B(2,0),离心率e=
3
2

(1)求椭圆的标准方程;
(2)若M,N是该椭圆上关于原点对称的点,M,N异于B点,直线MB与直线NB的斜率分别为K1,k2,计算K1•k2的值;
(3)若直线MB,直线NB分别与直线x=6相交C,D两点,证明以CD为直径的圆恒经过定点,并且求定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥p-ABCD中,AB∥CD,AB⊥AD,AB=4,AD=2
2
,CD=2,PA⊥平面ABCD,PA=4.
(1)求证BD⊥平面PAC;
(2)求二面角A-PC-B的余弦值;
(3)设点Q为线段PB上一点,且直线QC与平面PAC所成角的正弦值为
3
3
,求
PQ
PB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥E-ABCD中,底面ABCD是正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.
(1)求证:DE∥平面ACF;
(2)若AB=
2
CE,在线段EO上是否存在点G,使CG⊥平面BDE?若存在,求出
EG
EO
的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
4
+
y2
k
=1的离心率e=3,则k的值为
 

查看答案和解析>>

同步练习册答案