精英家教网 > 高中数学 > 题目详情
判断函数g(x)=
1
2
x2+1(x>0)
-
1
2
x2-1(x<0)
的奇偶性.
考点:函数奇偶性的判断
专题:函数的性质及应用
分析:根据函数奇偶性的定义进行判断即可得到结论.
解答: 解:若x>0,则-x<0,
则f(-x)=-
1
2
x2-1,f(x)=
1
2
x2+1,满足f(-x)=-f(x),
若x<0,则-x>0,
则f(x)=-
1
2
x2-1,f(-x)=
1
2
x2+1,满足f(-x)=-f(x),
综上:f(-x)=-f(x),
即函数f(x)是奇函数.
点评:本题主要考查函数奇偶性的判断,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一个几何体的三视图如图所示,则该几何体的体积为(  )
A、2
B、1
C、
2
3
D、
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,D为BC中点.
(Ⅰ) 求异面直线CB1与C1A1所成的角余弦值.
(Ⅱ) 求证:A1B∥平面ADC1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点F1与中心在原点的椭圆C的右焦点重合,且椭圆C过点(1,
2
2
).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点F1作直线l与椭圆C交于A、B两点,且点T是x轴上的一点,横坐标为2,求|
TA
+
TB
|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设两数列{an}、{bn}分别满足an+1=an+2n,bn+1=bn+2(n∈N+),且a1=b1=1.
(1)求数列{an}的通项公式;
(2)求数列{
1
an+bn
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{xn},满足x1=4,xn+1=
xn
2
+
2
xn
,an=lg
xn+2
xn-2

(1)证明:数列{an}成等比数列,并求数列{xn}的通项公式;
(2)若bn=xn-2,Tn是数列{bn}的前n项和,证明:Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C经过点(
2
2
2
),且与双曲线x2-
y2
2
=1共焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C的右焦点F作直线l交椭圆C于M、N两点,交y轴于P点,且记
PM
1
PM
PN
2
NF
,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校50名学生在一次科普知识竞赛中,初赛成绩全部介于60与100之间,将初赛成绩按如下方式分成四组:第一组[60,70],第二组[70,80],…,第四组[90,100].如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)求成绩在[80,90]范围内的人数;
(Ⅱ)决赛规则如下:为每位参加决赛的选手准备4道判断题,选手对其依次回答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对l道,则获得二等奖,否则获得三等奖.某同学进入决赛,每道题答对的概率p的值恰好与成绩不少于80分的频率值相同.
(i)求该同学恰好答满4道题而获得一等奖的概率;
(ii)设该同学决赛中答题个数为X,求X的分布列及X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a4=5,a7=11.求数列{an}的通项.

查看答案和解析>>

同步练习册答案