精英家教网 > 高中数学 > 题目详情
(2010•宿州三模)已知四边形ABCD为直角梯形,∠ADC=90°,AD∥BC,△ABD为等腰直角三角形,平面PAD⊥平面ABCD,E为PA的中点,AD=2BC=2
2
,PA=3PD=3.
(1)求证:BE∥平面PDC;
(2)求证:AB⊥平面PBD;
(3)求三棱锥B-DEP的体积.
分析:(1)取PD中点F,连EF、CF,证明四边形BCFE为平行四边形,然后证明BE∥平面PDC;
(2)通过计算说明PD⊥AD,利用平面与平面的垂直,证明PD⊥AB,即可证明AB⊥平面PBD;
(3)三棱锥B---DEP的体积,转化为
1
2
VA-PDB求出S△PBD
,即可求出三棱锥的体积.
解答:证明:(1)取PD中点F,连EF、CF,则EF∥AD且EF=
1
2
AD

由题意四边形BCFE为平行四边形,∴BE∥CF,
∵BE?平面PDC,CF?平面PDC,
∴BE∥平面PDC;          …(4分)
(2)由题意:AD=2BC=2
2
,PA=3PD=3.
∵AD2+PD2=AP2∴PD⊥AD,
又平面PAD⊥平面ABCD,∴PD⊥面ABCD,
∴PD⊥AB,又∴BD⊥AB,
∴AB⊥面PBD;                       …(8分)
解:(3)四边形ABCD为直角梯形,∠ADC=90°,AD∥BC,△ABD为等腰直角三角形,平面PAD⊥平面ABCD,E为PA的中点,AD=2BC=2
2
,PA=3PD=3.PD=1,DB=2,S△PDB=
1
2
×1×2
=1.
VE-PDB=
1
2
VA-PDB=
1
2
×
1
3
S△PBD×AB=
1
2
×
1
3
×1×2=
1
3
…(12分)
点评:本题考查直线与平面的平行的判定定理的应用,直线与平面垂直判断定理的应用,几何体的体积的求法,考查空间想象能力,计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•宿州三模)已知二次曲线
x2
4
+
y2
m
=1,则当m∈[-2,-1]
时,该曲线的离心率的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宿州三模)若将函数f(x)=Asin(ωx+
π
6
)
(A>0,ω>0)的图象向左平
π
6
移个单位后得到的图象关于原点对称,则ω的值可能为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宿州三模)曲线y=
2
cosx
-
π
4
x=
π
4
处的切线方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宿州三模)设不等式组
x-y+5≥0
x+y≥a
0≤x≤2
所表示的平面区域是一个三角形,则此平面区域面积的最大值
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宿州三模)已知函数f(x)=x2-2alnx,g(x)=
13
x3-x2

(1)讨论函数f(x)的单调区间;
(2)若f(x)≥g'(x)对于任意的x∈(1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案