【题目】数列{
}的前
项和为Sn,且Sn=n(n+1)(n∈N*).
(1)若数列
满足:
,求数列
的通项公式;
(2)令
,求数列{
}的前n项和Tn.
(3)
,(n为正整数),问是否存在非零整数
,使得对任意正整数n,都有
若存在,求
的值,若不存在,说明理由。
科目:高中数学 来源: 题型:
【题目】某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).
(1)将V表示成r的函数V(r),并求该函数的定义域;
(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{
}的前
项和为Sn,且Sn=n(n+1)(n∈N*).
(1)若数列
满足:
,求数列
的通项公式;
(2)令
,求数列{
}的前n项和Tn.
(3)
,(n为正整数),问是否存在非零整数
,使得对任意正整数n,都有
若存在,求
的值,若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
且
),定义域均为
.
(1)若当
时,
的最小值与
的最小值的和为
,求实数
的值;
(2)设函数
,定义域为
.
①若
,求实数
的值;
②设函数
,定义域为
.若对于任意的
,总能找到一个实数
,使得
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了鼓励市民节约用电,某市实行“阶梯式”电价,将每户居民的月用电量分为二档,月用电量不超过200度的部分按0.5元/度收费,超过200度的部分按0.8元/度收费.某小区共有居民1000户,为了解居民的用电情况,通过抽样,获得了今年7月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图.
![]()
(1)求
的值;
(2)试估计该小区今年7月份用电量用不超过260元的户数;
(3)估计7月份该市居民用户的平均用电费用(同一组中的数据用该组区间的中点值作代表).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)求函数
的最小值;
(2)当
时,记函数
的所有单调递增区间的长度为
,所有单调递减区间的长度为
,证明:
.(注:区间长度指该区间在
轴上所占位置的长度,与区间的开闭无关.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com