精英家教网 > 高中数学 > 题目详情

【题目】已知函数),定义域均为

(1)若当时,的最小值与的最小值的和为,求实数的值;

(2)设函数,定义域为

①若,求实数的值;

②设函数,定义域为.若对于任意的,总能找到一个实数,使得成立,求实数的取值范围.

【答案】(1);(2)①;②

【解析】

1)分别求出两个函数的最小值,利用其和为﹣2建立方程,即可求出实数a的值;

2)①求出函数hx)的解析式,按参数a的取值范围分类判断出函数的单调性,求出函数的最值,令其等于﹣2,解方程得出参数a的值;

②根据题意,判断出在区间上,函数hx)的值域是值域的子集,根据子集的定义转化出参数a的不等式,即可得出参数a的取值范围.

1)当时,为增函数,为减函数,

的最小值与的最小值的和为

,即,即32,解得

2

a1时,不存在;

0a1时,

综上,实数a的值为

②由题知,在区间上,函数hx)的值域是值域的子集,

易得的值域为[2+∞).

a1时,hx)的值域为

应有a1时均符合,

0a1时,hx)的值域为

应有

综上,实数a的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆:经过点,离心率为.

(1)求椭圆的方程;

(2)过点的直线交椭圆于两点,为椭圆的左焦点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】约定乒乓球比赛无平局且实行胜制,甲、乙二人进行乒乓球比赛,甲每局取胜的概率为

1)试求甲赢得比赛的概率;

2)当时,胜者获得奖金元,在第一局比赛甲获胜后,因特殊原因要终止比赛.试问应当如何分配奖金最恰当?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,分别是的中点,则(

A. B. C. 平面 D. 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{}的前项和为Sn,且Sn=n(n+1)(n∈N*).

(1)若数列满足:,求数列的通项公式;

(2)令,求数列{}的前n项和Tn.

(3) ,(n为正整数),问是否存在非零整数,使得对任意正整数n,都有若存在,求的值,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某少数民族的刺绣有着悠久的历史,如图4①,②,③,④为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.

(1)求出f(5)的值;

(2)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;

(3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙去某公司应聘面试.该公司的面试方案为:应聘者从6道备选题中一次性随机抽取3道题,按照答对题目的个数为标准进行筛选.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响.

(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;

(2)请分析比较甲、乙两人谁的面试通过的可能性较大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)判断的奇偶性与单调性;

(2)解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的左、右焦点为,离心率为,已知过轴上一点作一条直线,交椭圆于两点,且的周长最大值为8.

(1)求椭圆方程;

(2)以点为圆心,半径为的圆的方程为.的中点作圆的切线为切点,连接,证明:当取最大值时,点在短轴上(不包括短轴端点及原点).

查看答案和解析>>

同步练习册答案