精英家教网 > 高中数学 > 题目详情
17.已知 sinα>0,cosα<0,则角α的终边在第(  )象限.
A.B.C.D.

分析 设P(x,y)为角α终边上的一点,且|OP|=1.由于cosα<0,sinα>0,可得x<0,y>0.即可得出.

解答 解:设P(x,y)为角α终边上的一点,且|OP|=1.
∵cosα<0,sinα>0,
∴x<0,y>0.
∴P(x,y)在第二象限.
故选:B.

点评 本题考查了三角函数的定义、三角函数值在各个象限的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若数列{an}满足2(a1+a2+a3+…+an)=(a1+an)n,则数列{an}是等差数列.类比上述结论,可以猜想:若数列{bn}满足(b1b2b3…bn2=(b1bnn,则数列{bn}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ax-1-lnx(a∈R).
(1)当a=1时,求曲线在点(1,0)处的切线方程;
(2)求函数f(x)在区间$[{\frac{1}{2},2}]$上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a,b,c分别是锐角△ABC的三个内角A,B,C的对边,且$\frac{2b-c}{a}$=$\frac{cosC}{cosA}$.
(1)求A的大小;
(2)当$a=\sqrt{3}$时,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a,b,c分别为△ABC三个内角A,B,C的对边,且$\sqrt{3}bsinA-acosB-2a=0$.
(1)求∠B的大小;
(2)若$b=\sqrt{7},△ABC$的面积为$\frac{{\sqrt{3}}}{2}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数y=3sin($\frac{1}{2}$x-$\frac{π}{4}$)

(1)求此函数的振幅、周期和初相;
(2)用五点法在给定的坐标系中作出函数一个周期的图象.(先列表再作图)
$\frac{1}{2}$x-$\frac{π}{4}$
x
3sin($\frac{1}{2}$x-$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知正数数列{an}的前n项和为Sn,${a_n}=2\sqrt{S_n}-1$,设c为实数,对任意的三个成等差数列的不等的正整数m,k,n,不等式Sm+Sn>cSk恒成立,则实数c的取值范围是(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.点P(4,0)关于直线5x+4y+21=0的对称点的坐标是(-6,-8).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若$z=\frac{1+i}{1-i}$,则$|{\bar z}|$=(  )
A.iB.-iC.-1D.1

查看答案和解析>>

同步练习册答案