精英家教网 > 高中数学 > 题目详情
12.已知a,b,c分别为△ABC三个内角A,B,C的对边,且$\sqrt{3}bsinA-acosB-2a=0$.
(1)求∠B的大小;
(2)若$b=\sqrt{7},△ABC$的面积为$\frac{{\sqrt{3}}}{2}$,求△ABC的周长.

分析 (1)运用正弦定理,将边转化为角,结合两角差的正弦公式,化简后结合特殊角的正弦值,计算即可得到B的值;
(2)由三角形的面积公式,可得ac,再由余弦定理,结合配方可得a+c的值,即可得到所求三角形的周长.

解答 解:(1)由$\sqrt{3}bsinA-acosB-2a=0$,
由正弦定理可得,$\sqrt{3}$sinBsinA-sinAcosB-2sinA=0,
sinA>0可得,$\sqrt{3}$sinB-cosB=2,
即有2sin(B-$\frac{π}{6}$)=2,
可得B-$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈Z,
由B为三角形的内角,可得k=0,B=$\frac{2π}{3}$;
(2)$b=\sqrt{7},△ABC$的面积为$\frac{{\sqrt{3}}}{2}$,
则S=$\frac{1}{2}$acsinB=$\frac{1}{2}$acsin$\frac{2π}{3}$=$\frac{\sqrt{3}}{2}$,
即有ac=2,
又b2=a2+c2-2accos$\frac{2π}{3}$=(a+c)2-2ac+ac=7,
可得a+c=3,
则△ABC的周长为a+c+b=3+$\sqrt{7}$.

点评 本题考查解三角形的正弦定理、余弦定理和面积公式的运用,考查三角函数的恒等变换运用,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.双曲线$\frac{y^2}{2}-{x^2}=1$的焦距是$2\sqrt{3}$;渐近线方程为$\sqrt{2}x±y=0$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其2×2列联表为:
Y
X
y1y2总计
x1aba+b
x2cdc+d
总计a+cb+da+b+c+d
对同一样本,以下数据能说明X与Y有关的可能性最大的一组为(  )
(参考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$)
A.a=5,b=4,c=3,d=2B.a=5,b=3,c=4,d=2C.a=2,b=3,c=4,d=5D.a=3,b=2,c=4,d=5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$α∈({0,\frac{π}{2}})$,且$f(a)=cosα•\sqrt{\frac{1-sinα}{1+sinα}}+sinα•\sqrt{\frac{1-cosα}{1+cosα}}$.
(1)化简f(a);  
(2)若$f(a)=\frac{3}{5}$,求$\frac{sinα}{1+cosα}+\frac{cosα}{1+sinα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.有下列四个命题:
①若α、β均为第一象限角,且α>β,则sin α>sinβ;
②若函数y=2cos(ax-$\frac{π}{3}$)的最小正周期是4π,则a=$\frac{1}{2}$;
③函数y=$\frac{sin2x-sinx}{sinx-1}$是奇函数;
④函数y=sin(x-$\frac{π}{2}$)在[0,π]上是增函数;
其中正确命题的序号为④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知 sinα>0,cosα<0,则角α的终边在第(  )象限.
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=xlnx
(1)求f(x)在点(1,f(1))处的切线方程;
(2)若函数$F(x)=\frac{f(x)-a}{x}$在[1,e]上的最小值为$\frac{3}{2}$,求a的值;
(3)若k∈Z,且f(x)+x-k(x-1)>0对任意x>1恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)={a^2}x-\frac{1}{x}-2aln(ax)+\frac{1}{2}$,f'(x)为其导函数.
(1)设$g(x)=f(x)+\frac{1}{x}$,求函数g(x)的单调区间;
(2)若a>0,设A(x1,f(x1)),B(x2,f(x2))为函数f(x)图象上不同的两点,且满足f(x1)+f(x2)=1,设线段AB中点的横坐标为x0,证明:ax0>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}是首项为a1,公差为d的等差数列,记其前n项和为Sn,试用a1,d,n表示Sn,并用数学归纳法证明.

查看答案和解析>>

同步练习册答案