精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn,且满足Sn=2an-2.(n∈N*
(1)求数列{an}的通项an
(2)若数列{bn}满足bn=log2an,Tn为数列{
bn
an
}的前n项和,求证Tn
1
2
考点:数列的求和,数列与不等式的综合
专题:等差数列与等比数列
分析:(1)由于满足Sn=2an-2.(n∈N*),可得当n=1时,a1=2a1-2,解得a1;当n≥2时,an=Sn-Sn-1,化为an=2an-1,利用等比数列的定义与通项公式即可得出.
(2)bn=log2an=log22n=n.可得
bn
an
=
n
2n
.利用“错位相减法”即可得出.
解答: (1)解:∵满足Sn=2an-2.(n∈N*),
∴当n=1时,a1=2a1-2,解得a1=2;
当n≥2时,an=Sn-Sn-1=2an-2-(2an-1-2),化为an=2an-1
∴数列{an}的通项an是等比数列,
an=2n
(2)证明:bn=log2an=log22n=n.
bn
an
=
n
2n

∴数列{
bn
an
}的前n项和Tn=
1
2
+
2
22
+
3
23
+…+
n
2n

1
2
Tn
=
1
22
+
2
23
+…+
n-1
2n
+
n
2n+1

1
2
Tn
=
1
2
+
1
22
+
1
23
+…+
1
2n
-
n
2n+1
=
1
2
(1-
1
2n
)
1-
1
2
-
n
2n+1
=1-
1
2n
-
n
2n+1

∴Tn=2-
2+n
2n

2+n
2n
3+n
2n+1

∴Tn≥T1=
1
2
点评:本题考查了比数列的通项公式与前n项和公式、“错位相减”、对数的运算性质、数列的单调性,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f'(x)=
2ax2+x-(2a-1)
x2
=
(x+1)[2ax-(2a-1)]
x2

(1)若函数f(x)在(0,+∞),f'(x)≥0处取得极值,求f'(x)≤0,(0,+∞)的值;
(2)若a=0,函数f'(x)=
x+1
x2
>0在f(x)上是单调函数,求(0,+∞)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,其中a1=1,且当n≥2,an=
an-1
2an-1+1
,求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ex(x-1)的图象在点(1,f(1))处的切线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

与命题“若p则q”的否命题真假相同的命题是(  )
A、若q 则p
B、若¬p则q
C、若¬q则p
D、若¬p则¬q

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinx,
3
2
),
b
=(
1
2
,cosx)
,f(x)=
a
b

(1)求函数y=f(x)的解析式;
(2)求函数y=f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)唯一的一个零点同时在区间(0,2),(1,2),(0,4),则下列命题中正确的是(  )
A、函数f(x)在区间(0,1)内有零点
B、函数f(x)在区间(1,1.5)内有零点
C、函数f(x)在区间(2,4)内无零点
D、函数f(x)在区间(1,4)内无零点

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
2a+acosx+3sinx
2+cosx
(a、b∈R)有最大值和最小值,且最大值与最小值的和为6,则a=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=Asin(ωx+φ)图象的一部分如图所示,则此函数的解析式可以写成(  )
A、y=sin(2x+
π
4
B、y=sin(x+
π
8
C、y=sin(2x+
π
8
D、y=sin(2x-
π
4

查看答案和解析>>

同步练习册答案