精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin2x+2cos2x.
(Ⅰ)求函数的周期;
(Ⅱ)求f(x)的最大值及对应的x值的集合.
考点:二倍角的余弦,两角和与差的正弦函数,三角函数的周期性及其求法
专题:综合题,三角函数的求值
分析:(I)根据二倍角的余弦公式结合辅助角公式,化简整理得f(x)=
2
sin(2x+
π
4
)+1,根据函数y=Asin(ωx+φ)的周期,不难得到函数f(x)的最小正周期;
(Ⅱ)根据函数y=Asin(ωx+φ)的最大值,即可求f(x)的最大值及对应的x值的集合.
解答: 解:(Ⅰ)∵2cos2x-1=cos2x,
∴f(x)=sin2x+cos2x+1=
2
sin(2x+
π
4
)+1,
因此,函数的周期T=
2
=π;
(Ⅱ)∵-1≤sin(2x+
π
4
)≤1,
∴当2x+
π
4
=
π
2
+2kπ时,即x=
π
8
+kπ(k∈Z)时,函数的最大值为
2
+1.
点评:本题结合辅助角公式和三角函数的降幂公式,将三角函数式化简并求函数的周期与最值,着重考查了三角函数中的恒等变换应用和函数y=Asin(ωx+φ)的图象与性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)画出不等式组
x-4y≤-4  
3x+5y≤15  
x≥1  
表示的平面区域.
(2)A={x|x2-x-6<0},B={x|x2+2x-8>0},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

在研究某种新措施对猪白痢的防治效果问题时,得到以下数据:
存活数死亡数     合计
  未采取新措施     12     25    37
采取新措施     10     24     34
     合计      22     49     71
试问新措施对防治猪白痢是否有效?
附表:
P(K2≥k)0.5000.4000.2500.1500.1000.0500.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的一个顶点为A(2,0),离心率为
2
2

(1)求椭圆C的方程;
(2)经过点M(1,1)能否作一条直线l,使直线l与椭圆交与A,B两点,且使得M是线段AB的中点,若存在,求出它的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线E与椭圆
x2
25
+
y2
16
=1有公共焦点,且离心率为
3
2

(1)求双曲线E的方程;
(2)若斜率为1的直线l交双曲线E于A、B两点,且|AB|=4
30
,求l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

有10张卡片,其中8张标有数字2,2张标有数字5,从中随机地抽取3张卡片,设3张卡片数字之和为ξ,求E( ξ ) 和D( ξ ).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)(
x
+
1
3x
)n
的展开式的各项系数和为32,求这个展开式的常数项.
(2)若
A
m
n
=272,
C
m
n
=136,问(x-
1
x
)n
的展开式中含xm的项是第几项.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)证明:a2+b2+3≥ab+
3
(a+b);
(Ⅱ)已知:a,b,c均为实数,且a=x2-2y+
π
2
,b=y2-2z+
π
3
,c=z2-2x+
π
6

求证:a,b,c中至少有一个大于0.

查看答案和解析>>

科目:高中数学 来源: 题型:

用“充分、必要、充要”填空:
(1)p∨q为真命题是p∧q为真命题的
 
条件;
(2)¬p为假命题是p∨q为真命题的
 
条件.

查看答案和解析>>

同步练习册答案