精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=x2+bx+c满足f(2-x)=f(2+x),f(0)>0,且f(m)=f(n)=0(m≠n),则log4m-log${\;}_{\frac{1}{4}}$n的值是(  )
A.小于1B.等于1C.大于1D.由b的符号确定

分析 先根据二次函数的性质得到对称轴为x=2,则可得到m+n=4,根据对数的运算性质和基本不等式即可得到答案.

解答 解:函数f(x)=x2+bx+c满足f(2-x)=f(2+x),
∴函数的对称轴为x=2,
∵f(m)=f(n)=0(m≠n),
∴m+n=4,
∴mn<($\frac{m+n}{2}$)2=4
∴log4m-log${\;}_{\frac{1}{4}}$n=log4m+log4n=log4mn<log44=1,
故选:A

点评 本题考查了二次函数的性质,对数的运算性质和基本不等式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.等差数列{an}中,公差d≠0,且2a4-a72+2a10=0,数列{bn}是等比数列,且b7=a7,则b5b9=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(sinx)=cos2x,那么f($\frac{1}{2}$)的值为(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某几何体的三视图如图所示,则该几何体是(  )
A.棱柱B.圆柱C.棱锥D.圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.赵州桥是当今世界上建造最早、保存最完整的我国古代单孔敞肩石拱桥(图一).若以赵州桥跨径AB所在直线为x轴,桥的拱高OP所在直线为y轴,建立平面直角坐标系(图二),有桥的圆拱APB所在的圆的方程为x2+(y+20.7)2=27.92.求|OP|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的函数f(x)对任意x1,x2(x1≠x2)都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,且函数y=f(x+1)的图象关于原点对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2+2),则当1≤s≤4时,$\frac{t-2s}{s+t}$的取值范围是(  )
A.[-3,-$\frac{1}{2}$)B.[-3,-$\frac{1}{2}$]C.[-5,-$\frac{1}{2}$)D.[-5,-$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图
(I)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(II)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
参考数据:$\sum_{i=1}^{7}$yi=9.32,$\sum_{i=1}^{7}$tiyi=40.17,$\sqrt{\sum_{i=1}^{7}({y}_{i}-\overline{y})^{2}}$=0.55,$\sqrt{7}$≈2.646.
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}\sum_{i=1}^{n}({y}_{u}-\overline{y})^{2}}}$,$\sum_{i=1}^{n}$(ti-$\overline{t}$)(yi-$\overline{y}$)=$\sum_{i=1}^{n}$tiyi-$\overline{y}$•$\sum_{i=1}^{n}$ti-$\overline{t}$•$\sum_{i=1}^{n}$yi+n$\overline{t}$•$\overline{y}$.
回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{a}$+$\stackrel{∧}{b}$t 中斜率和截距的最小二乘估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({t}_{u}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$$\overline{t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.把一个半径为R的实心铁球熔化铸成两个小球(不计损耗),两个小球的半径之比为1:2,则其中较小球半径为(  )
A.$\frac{1}{3}$RB.$\frac{\root{3}{3}}{3}$RC.$\frac{\root{3}{25}}{5}$RD.$\frac{\sqrt{3}}{3}$R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.列车从A地出发直达500km外的B地,途中要经过离A地300km的C地,假设列车匀速前进,5h后从A地到达B地,则列车与C地距离y(单位:km)与行驶时间t(单位:h)的函数图象为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案