精英家教网 > 高中数学 > 题目详情

【题目】已知函数 为R上的单调函数,则实数a的取值范围是

【答案】[﹣4,﹣1]
【解析】解:函数 为R上的单调函数,

当x<1,y1=2x﹣5是单调递增,其最大值小于﹣3, 也是单调递增,

根据勾勾函数的性质可知:当a>0时,y2 是单调递增,

的定义域为{x|x≥1},

解得:0<a≤1.

那么:当x=1时,函数 取得小值为1+a.

由题意: ,即1+a≥﹣3,

解得:a≥﹣4.

综上可得:1≥a≥﹣4.

故得实数a的取值范围是[﹣4,﹣1].

【考点精析】本题主要考查了函数单调性的性质的相关知识点,需要掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)= +lg(x﹣1)+(x﹣3)0 的定义域为( )
A.{x|1<x≤4}
B.{x|1<x≤4且x≠3}
C.{x|1≤x≤4且x≠3}
D.{x|x≥4}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用M[A]表示非空集合A中的元素个数,记|A﹣B|= ,若A={1,2,3},B={x||x2﹣2x﹣3|=a},且|A﹣B|=1,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记关于x的不等式 的解集为P,不等式|x+2|<3的解集为Q
(1)若a=3,求P;
(2)若P∪Q=Q,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一元二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,其中一个公共点的坐标为(c,0),且当0<x<c时,恒有f(x)>0.
(1)当a=1, 时,求出不等式f(x)<0的解;
(2)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;
(4)若不等式m2﹣2km+1+b+ac≥0对所有k∈[﹣1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区的农产品A第x天(1≤x≤20,x∈N*)的销售价格p=50﹣|x﹣6|(元∕百斤),一农户在第x天(1≤x≤20,x∈N*)农产品A的销售量q=a+|x﹣8|(百斤)(a为常数),且该农户在第7天销售农产品A的销售收入为2009元.
(1)求该农户在第10天销售农产品A的销售收入是多少?
(2)这20天中该农户在哪一天的销售收入最大?为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合A={(x,y)|y=a|x|,x∈R},B={(x,y)|y=x+a,x∈R},已知集合A∩B中有且仅有一个元素,则常数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABCD﹣A1B1C1D1为正方体,① ;② ;③向量 与向量 的夹角是60°;④正方体ABCD﹣A1B1C1D1的体积为 .其中正确的命题是(写出所有正确命题编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列不等式的解集.
(1)x2+4x+4>0
(2)(1﹣2x)(x﹣1)3(x+1)2<0

查看答案和解析>>

同步练习册答案