17£®¶ÔÓÚ¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©£¬Èô´æÔÚx0ʹµÃ$\underset{\underbrace{f£¨f¡­£¨f£¨{x}_{0}£©£©£©}}{k}$=x0£¨*£©£¬ÆäÖÐkΪij¸öÕýÕûÊý£¬Ôò³Æx0Ϊº¯Êýf£¨x£©µÄÒ»¸öÖÜÆÚµã£¬Ê¹µÃ£¨*£©Ê½³ÉÁ¢µÄÕýÕûÊýk³ÆÎªx0µÄÖÜÆÚ£¬Ê¹µÃ£¨*£©Ê½³ÉÁ¢µÄ×îСÕýÕûÊýk³ÆÎªx0µÄ×îСÖÜÆÚ£¬Èôº¯Êýf£¨x£©=1-|2x-1|£¬Ôòº¯Êýf£¨x£©£¨¡¡¡¡£©
A£®Ç¡ÓÐÒ»¸ö×îСÖÜÆÚΪ1µÄÖÜÆÚµã£¬Ç¡ÓÐÒ»¸ö×îСÖÜÆÚΪ2µÄÖÜÆÚµã
B£®Ç¡ÓÐÒ»¸ö×îСÖÜÆÚΪ1µÄÖÜÆÚµã£¬Ç¡ÓÐÁ½¸ö×îСÖÜÆÚΪ2µÄÖÜÆÚµã
C£®Ç¡ÓÐÁ½¸ö×îСÖÜÆÚΪ1µÄÖÜÆÚµã£¬Ç¡ÓÐÁ½¸ö×îСÖÜÆÚΪ2µÄÖÜÆÚµã
D£®Ç¡ÓÐÁ½¸ö×îСÖÜÆÚΪ1µÄÖÜÆÚµã£¬Ç¡ÓÐËĸö×îСÖÜÆÚΪ2µÄÖÜÆÚµã

·ÖÎö ÔËÓ÷ֶκ¯Êý±íʾf£¨x£©£¬ÔÙÁîf£¨x£©=x£¬½â·½³Ì¿ÉµÃº¯Êýf£¨x£©Ç¡ÓÐÁ½¸ö×îСÖÜÆÚΪ1µÄÖÜÆÚµã£»ÔÙ½«f£¨f£¨x£©£©Ð´³É·Ö¶Îº¯Êý£¬Áîf£¨f£¨x£©£©=x£¬½â·½³Ì¿ÉµÃº¯Êýf£¨x£©Ç¡ÓÐËĸö×îСÖÜÆÚΪ2µÄÖÜÆÚµã£®¼´¿ÉµÃµ½½áÂÛ£®

½â´ð ½â£ºf£¨x£©=1-|2x-1|=$\left\{\begin{array}{l}{2-2x£¬x¡Ý\frac{1}{2}}\\{2x£¬x£¼\frac{1}{2}}\end{array}\right.$£¬
Áîf£¨x£©=x£¬ÓÉ2-2x=x£¬½âµÃx=$\frac{2}{3}$£»
ÓÉ2x=x£¬½âµÃx=0£¬
¼´º¯Êýf£¨x£©Ç¡ÓÐÁ½¸ö×îСÖÜÆÚΪ1µÄÖÜÆÚµã£»
f£¨f£¨x£©£©=1-|2£¨1-|2x-1|£©-1|=$\left\{\begin{array}{l}{4x£¬x¡Ü\frac{1}{4}}\\{2-4x£¬\frac{1}{4}£¼x¡Ü\frac{1}{2}}\\{4x-2£¬\frac{1}{2}£¼x¡Ü\frac{3}{4}}\\{4-4x£¬x£¾\frac{3}{4}}\end{array}\right.$£¬
Áîf£¨f£¨x£©£©=x£¬
ÓÉ4x=x£¬¿ÉµÃx=0£¬ÓÉ2-4x=x£¬½âµÃx=$\frac{2}{5}$£¬
ÓÉ4x-2=x£¬½âµÃx=$\frac{2}{3}$£¬ÓÉ4-4x=x£¬½âµÃx=$\frac{4}{5}$£®
¼´Óк¯Êýf£¨x£©Ç¡ÓÐËĸö×îСÖÜÆÚΪ2µÄÖÜÆÚµã£®
¹ÊÑ¡D£®

µãÆÀ ±¾Ì⿼²éº¯ÊýµÄÐÔÖʺÍÔËÓã¬Ö÷Òª¿¼²éж¨ÒåµÄÀí½âºÍÔËÓ㬿¼²é·Ö¶Îº¯ÊýµÄÔËÓã¬×¢ÒâÈ¥¾ø¶ÔÖµµÄ·½·¨£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®£¨¢ñ£©ÒÑÖªÕýÊýa1¡¢a2Âú×ãa1+a2=1£¬ÇóÖ¤£ºa1log2a1+a2log2a2¡Ý-1£»
£¨¢ò£©ÈôÕýÊýa1¡¢a2¡¢a3¡¢a4Âú×ãa1+a2+a3+a4=1£¬ÇóÖ¤£ºa1log2a1+a2log2a2+a3log2a3+a4log2a4¡Ý-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Çó$\frac{¦Ð}{2}$µÄ¸÷Èý½Çº¯ÊýÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÈýÀâ×¶S-ABC¼°ÆäÈýÊÓͼÖеÄÕý£¨Ö÷£©ÊÓͼºÍ²à£¨×ó£©ÊÓͼÈçͼËùʾ£¬ÔòÀâSBµÄ³¤Îª4$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªÊýÁÐ{an}ΪµÝÔöµÈ±ÈÊýÁУ¬ÆäǰnÏîºÍΪSn£®Èôa1=1£¬2an+1+2an-1=5an£¨n¡Ý2£©£¬ÔòS5=£¨¡¡¡¡£©
A£®$\frac{31}{16}$B£®$\frac{31}{32}$C£®31D£®15

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©+1£¨¦Ø£¾0£¬-$\frac{¦Ð}{2}$£¼¦Õ£¼$\frac{¦Ð}{2}$£©µÄ×îСÕýÖÜÆÚΪ¦Ð£¬Í¼Ïó¹ýµãP£¨0£¬1£©
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨¢ò£©É躯Êý g£¨x£©=f£¨x£©+cos2x-1£¬½«º¯Êý g£¨x£©Í¼ÏóÉÏËùÓеĵãÏòÓÒÆ½ÐÐÒÆ¶¯$\frac{¦Ð}{4}$¸öµ¥Î»³¤¶Èºó£¬ËùµÃµÄͼÏóÔÚÇø¼ä£¨0£¬m£©ÄÚÊǵ¥µ÷º¯Êý£¬ÇóʵÊýmµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Ò»¸ö¼¸ºÎÌåµÄÈýÊÓͼÈçͼ£¬ÕýÊÓͼºÍ²àÊÓͼ¶¼ÊÇÓÉÒ»¸ö°ëÔ²ºÍÒ»¸ö±ß³¤Îª2µÄÕý·½ÐÎ×é³É£¬¸©ÊÓͼÊÇÒ»¸öÔ²£¬ÔòÕâ¸ö¼¸ºÎÌåµÄ±íÃæ»ýΪ7¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®¶¨ÒåÔËËãa*bΪִÐÐÈçͼËùʾµÄ³ÌÐò¿òͼÊä³öµÄSÖµ£¬Ôò$£¨cos\frac{5¦Ð}{12}£©*£¨sin\frac{5¦Ð}{12}£©$µÄֵΪ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=lnx-a£¨x-1£©£¬g£¨x£©=ex£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©¹ýÔ­µã·Ö±ð×÷ÇúÏßy=f£¨x£©Óëy=g£¨x£©µÄÇÐÏßl1¡¢l2£¬ÒÑÖªÁ½ÇÐÏßµÄбÂÊ»¥Îªµ¹Êý£¬Ö¤Ã÷£ºa=0»ò$\frac{e-1}{e}$£¼a£¼$\frac{{e}^{2}-1}{e}$£»
£¨3£©Éèh£¨x£©=f£¨x+1£©+g£¨x£©£¬µ±x¡Ý0ʱ£¬h£¨x£©¡Ý1£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸