精英家教网 > 高中数学 > 题目详情
9.一个几何体的三视图如图,正视图和侧视图都是由一个半圆和一个边长为2的正方形组成,俯视图是一个圆,则这个几何体的表面积为7π.

分析 根据三视图得:该几何体是上边是一个半径为1的半球,下面是一个由半径为1,高为2的圆柱组成的几何体,进一步求出几何体的表面积.

解答 解:根据三视图得:该几何体是上边是一个半径为1的半球,下面是一个由半径为1,高为2的圆柱组成的几何体.
所以该几何体的表面积是:S=2π+2π×2+π=7π,
故答案为:7π.

点评 本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥E-ABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F为CE的中点,
(1)求证:AE∥平面BDF;
(2)求证:平面BDF⊥平面ACE;
(3)2AE=EB,在线段AE上找一点P,使得二面角P-DB-F的余弦值为$\frac{{\sqrt{10}}}{10}$,求AP的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,E、F分别为AB、AC上的点,且AE:EB=AF:FC=1:2,P为EF上任一点,实数x、y满足$\overrightarrow{PA}$+x$\overrightarrow{PB}$+y$\overrightarrow{PC}$=$\overrightarrow{0}$,设△ABC、△PBC、△PCA、△PAB的面积分别为S、S1、S2、S3,记$\frac{{S}_{1}}{S}$=λ1,$\frac{{S}_{2}}{S}$=λ2,$\frac{{S}_{3}}{S}$=λ3,则当λ2•λ3取最大值时,2x+y的值为(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.对于定义在R上的函数f(x),若存在x0使得$\underset{\underbrace{f(f…(f({x}_{0})))}}{k}$=x0(*),其中k为某个正整数,则称x0为函数f(x)的一个周期点,使得(*)式成立的正整数k称为x0的周期,使得(*)式成立的最小正整数k称为x0的最小周期,若函数f(x)=1-|2x-1|,则函数f(x)(  )
A.恰有一个最小周期为1的周期点,恰有一个最小周期为2的周期点
B.恰有一个最小周期为1的周期点,恰有两个最小周期为2的周期点
C.恰有两个最小周期为1的周期点,恰有两个最小周期为2的周期点
D.恰有两个最小周期为1的周期点,恰有四个最小周期为2的周期点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{2}$x2-ax+(a-1)lnx(a>1).
(Ⅰ) 讨论函数f(x)的单调性;
(Ⅱ) 若a=2,数列{an}满足an+1=f(an).
(1)若首项a1=10,证明数列{an}为递增数列;
(2)若首项为正整数,且数列{an}为递增数列,求首项a1的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=$\frac{x-1}{x+1}$(x∈R)的图象对称中心是(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,正方形OABC的边长为1,记曲线y=x2和直线$y=\frac{1}{4}$,x=1,x=0所围成的图形(阴影部分)为Ω,若向正方形OABC内任意投一点M,则点M落在区域Ω内的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z=1+i+i2+…i10,则复数z在复平面内对应的点为(  )
A.(1,1)B.(1,-1)C.(0,1)D.(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若${(x+\frac{1}{x})^8}$展开式中含x2的项的系数为56.

查看答案和解析>>

同步练习册答案