分析 (1)由韦达定理得tanα+tanβ=5,tanαtanβ=6,由此利用正切加法公式能求出α+β的值.
(2)解方程x2-5x+6=0,得tanα=2,tanβ=3,或tanα=3,tanβ=2,由此利用同角三角函数及余弦函数加法定理能求出结果.
解答 解:(1)∵tanα和tanβ是方程x2-5x+6=0的两个根,
∴可得tanα+tanβ=5,tanαtanβ=6,
∴tan(α+β)=$\frac{tanα+tanβ}{1-tanα•tanβ}$=$\frac{5}{1-6}$=-1.
∵tanα>0,tanβ>0,α、β∈(0°,180°),可得:α,β∈(0°,90°),α+β∈(0°,180°),
∴α+β=135°.
(2)解方程x2-5x+6=0,得x1=2,x2=3,
∴tanα=2,tanβ=3,或tanα=3,tanβ=2,
当tanα=2,tanβ=3时,α,β都是第1象限角,
sinα=$\frac{2\sqrt{5}}{5}$,cosα=$\frac{\sqrt{5}}{5}$,sinβ=$\frac{3\sqrt{10}}{10}$,cosβ=$\frac{\sqrt{10}}{10}$,
∴cos(α-β)=cosαcosβ+sinαsinβ=$\frac{\sqrt{5}}{5}$×$\frac{\sqrt{10}}{10}$+$\frac{2\sqrt{5}}{5}$×$\frac{3\sqrt{10}}{10}$=$\frac{7\sqrt{2}}{10}$.
当tanα=3,tanβ=2时,α,β都是第1象限角,
sinβ=$\frac{2\sqrt{5}}{5}$,cosβ=$\frac{\sqrt{5}}{5}$,sinα=$\frac{3\sqrt{10}}{10}$,cosα=$\frac{\sqrt{10}}{10}$,
∴cos(α-β)=cosαcosβ+sinαsinβ=$\frac{\sqrt{10}}{10}$×$\frac{\sqrt{5}}{5}$+$\frac{2\sqrt{5}}{5}$×$\frac{3\sqrt{10}}{10}$=$\frac{7\sqrt{2}}{10}$.
∴cos(α-β)=$\frac{7\sqrt{2}}{10}$.
点评 本题考查两角和的求法,考查余弦函数的求法,解题时要认真审题,注意正切加法定理和余弦加法定理的合理运用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2$\overrightarrow{a}$+$\overrightarrow{b}$ | B. | -2$\overrightarrow{a}$-$\overrightarrow{b}$ | C. | -$\overrightarrow{a}$+2$\overrightarrow{b}$ | D. | -$\overrightarrow{a}$-2$\overrightarrow{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | α⊥β,l∥α⇒l⊥β | B. | α⊥β,l⊥α⇒l∥β | C. | α∥β,l∥α⇒l∥β | D. | α∥β,l⊥α⇒l⊥β |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com