精英家教网 > 高中数学 > 题目详情

【题目】有一批材料可以建成200m的围墙,若用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形,如何设计这块矩形场地的长和宽,能使面积最大,并求出最大面积.

【答案】时,S取得最大值.此时,长为100m,宽为25m.

【解析】

设每个小矩形长为x,宽为y,则依题意可知4x+3y=200,代入矩形的面积公式,根据二次函数的单调性求得围城矩形面积的最大值.

设每个小矩形长为x,宽为y,则4x+3y=200,
S=3xy=x(200-4x)=-4x2+200x=-4(x-25)2+2500
∴x=25时,Smax=2500(m2),此时,长为100m,宽为25m.
所以长为100m,宽为25m,围成的矩形的最大面积是2500(m2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=sinxcosx+cos2x-

(Ⅰ)求函数fx)的最小正周期及单调递增区间;

(Ⅱ)将函数fx)图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数gx)的图象.若关于x的方程gx)-k=0,在区间[0,]上有实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性;

(Ⅱ)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游风景区发行的纪念章即将投放市场,根据市场调研情况,预计每枚该纪念章的市场价y(单位:元)与上市时间x(单位:天)的数据如下:

上市时间x

2

6

20

市场价y

102

78

120

1)根据上表数据,从下列函数中选取一个恰当的函数描述该纪念章的市场价y与上市时间x的变化关系并说明理由:①;②;③

2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格;

3)利用你选取的函数,若存在,使得不等式成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,水平的广场上有一盏路灯挂在高的电线杆顶上,记电线杆的底部为点.把路灯看作一个点光源,身高的女孩站在离点的点处,回答下面的问题.

1)若女孩以为半径绕着电线杆走一个圆圈,人影扫过的是什么图形,求这个图形的面积;

2)若女孩向点前行到达点,然后从点出发沿着以为对角线的正方形走一圈,画出女孩走一圈时头顶影子的轨迹,说明轨迹的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的不等式为实数)的解集为,集合.

1)若,求的取值范围;

2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(个月)和市场占有率()的几组相关对应数据:

1

2

3

4

5

0.02

0.05

0.1

0.15

0.18

(1)根据上表中的数据,用最小二乘法求出关于的线性回归方程;

(2)根据上述回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个月,该款旗舰机型市场占有率能超过(精确到月).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分,设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.

1)求开始第4次发球时,甲、乙的比分为12的概率;

2表示开始第4次发球时乙的得分,求的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某少儿游泳队需对队员进行限时的仰卧起坐达标测试;已知队员的测试分数与仰卧起坐

个数之间的关系如下:;测试规则:每位队员最多进行三组测试,

每组限时1分钟,当一组测完,测试成绩达到60分或以上时,就以此组测试成绩作为该

队员的成绩,无需再进行后续的测试,最多进行三组;根据以往的训练统计,队员“喵儿”

在一分钟内限时测试的频率分布直方图如下:

(1)计算值,并根据直方图计算“喵儿”1分钟内仰卧起坐的个数;

(2)计算在本次的三组测试中,“喵儿”得分等于的概率.

查看答案和解析>>

同步练习册答案