精英家教网 > 高中数学 > 题目详情
已知椭圆的中心在原点,焦点在轴上,一个顶点为,且其右焦点到直线的距离为3.
(Ⅰ)求椭圆方程;
(Ⅱ)设直线过定点,与椭圆交于两个不同的点,且满足
求直线的方程.
(1)
(2)).

试题分析:(1)设椭圆方程为, 则.  1分   
令右焦点, 则由条件得,得 3分  
那么,∴椭圆方程为. 4分
(2)若直线斜率不存在时,直线即为轴,此时为椭圆的上下顶点,
,不满足条件;    5分
故可设直线:,与椭圆联立,
消去得: . 6分
,得.  7分      
由韦达定理得
       8分 
的中点,则
,则有.
 10分
可求得.    11分 
检验    12分 
所以直线方程为.  3分 
点评:主要是考查了直线与椭圆的位置关系的运用,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,为半圆,为半圆直径,为半圆圆心,且为线段的中点,已知,曲线点,动点在曲线上运动且保持的值不变.
(I)建立适当的平面直角坐标系,求曲线的方程;
(II)过点的直线与曲线交于两点,与所在直线交于点,证明:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,抛物线的焦点为F,准线与x轴的交点为A.点C在抛物线E上,以C为圆心,为半径作圆,设圆C与准线交于不同的两点M,N.

(I)若点C的纵坐标为2,求
(II)若,求圆C的半径.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是抛物线的焦点,是该抛物线上的两点,且,则线段的中点到轴的距离为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点与点在直线的两侧,则下列说法:
(1);                   
(2)时,有最小值,无最大值;
(3)恒成立  
(4),, 则的取值范围为(-
其中正确的是     (把你认为所有正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆C:的离心率e为, 且椭圆C的一个焦点与抛物线y2=-12x的焦点重合.
(1) 求椭圆C的方程;
(2) 设点M(2,0), 点Q是椭圆上一点, 当|MQ|最小时, 试求点Q的坐标;
(3) 设P(m,0)为椭圆C长轴(含端点)上的一个动点, 过P点斜率为k的直线l交椭圆与
A,B两点, 若|PA|2+|PB|2的值仅依赖于k而与m无关, 求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

准线方程为x=1的抛物线的标准方程是(   )
A.B.C. D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

平面直角坐标系xOy中,过椭圆M:右焦点的直线于A,B两点,P为AB的中点,且OP的斜率为.
(Ι)求M的方程;
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形面积的最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的两焦点是椭圆上一点且的等差中项,则此椭圆的标准方程为               

查看答案和解析>>

同步练习册答案