【题目】对于函数
,有下列五个命题:
①若
存在反函数,且与反函数图象有公共点,则公共点一定在直线
上;
②若
在
上有定义,则
一定是偶函数;
③若
是偶函数,且
有解,则解的个数一定是偶数;
④若
是函数
的周期,则
,也是函数
的周期;
⑤
是函数
为奇函数的充分不必要条件。
从中任意抽取一个,恰好是真命题的概率为 ( )
A.
B.
C.
D.![]()
【答案】B
【解析】
①若y=f(x)存在反函数,且与反函数图象有公共点,则公共点不一定在直线y=x上,如函数f(x)=
,反函数是其本身,公共点是整个函数图象;
②若y=f(x)在R上有定义,则y=f(|x|)一定是偶函数,因f(|-x|)=f(|x|)对于任意x恒成立,故正确;
③若y=f(x)是偶函数,且f(x)=0有解,则解的个数一定是偶数不正确,如y=x2,是偶函数,x2=0的解只有一个,不是偶数个;
④若T(T≠0)是函数y=f(x)的周期,则f(x+T)=f(x),从而f(x+nT)=f(x),则nT(n∈N),也是函数y=f(x)的周期;
⑤f(0)=0是函数y=f(x)为奇函数的充分也不必要条件,不正确,f(x)=x2时,f(0)=0,而f(x)=x2是偶函数.
故正确的命题有2个,
则从中任意抽取一个,恰好是真命题的概率为![]()
故选B.
科目:高中数学 来源: 题型:
【题目】某公园草坪上有一扇形小径(如图),扇形半径为
,中心角为
,甲由扇形中心
出发沿
以每秒2米的速度向
快走,同时乙从
出发,沿扇形弧以每秒
米的速度向
慢跑,记
秒时甲、乙两人所在位置分别为
,
,通过计算
,判断下列说法是否正确:
![]()
(1)当
时,函数
取最小值;
(2)函数
在区间
上是增函数;
(3)若
最小,则
;
(4)
在
上至少有两个零点;
其中正确的判断序号是______(把你认为正确的判断序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
,
为参数),曲线
的参数方程为
(
为参数),直线
与曲线
交于
,
两点.
(1)以坐标原点为极点,
轴正半轴为极轴建立极坐标系,求曲线
的极坐标方程;
(2)若
,点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,定义
为两点
、
的“切比雪夫距离”,又设点
及
上任意一点
,称
的最小值为点
到直线
的“切比雪夫距离”,记作
,给出四个命题,正确的是________.
①对任意三点
、
、
,都有
;
② 到原点的“切比雪夫距离”等于
的点的轨迹是正方形;
③ 已知点
和直线
,则
;
④ 定点
、
,动点
满足
,则点
的轨迹与直线
(
为常数)有且仅有
个公共点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
、
、
、
是同一平面上不共线的四点,若存在一组正实数
、
、
,使得
,则三个角
、
、
( )
A. 都是钝角B. 至少有两个钝角
C. 恰有两个钝角D. 至多有两个钝角
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】太极图被称为“中华第一图”.从孔庙大成殿梁柱,到楼观台、三茅宫标记物;从道袍、卦摊、中医、气功、武术到韩国国旗
,太极图无不跃居其上.这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为“阴阳鱼太极图”.在如图所示的阴阳鱼图案中,阴影部分可表示为
,设点
,则
的最大值与最小值之差是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了
人,他们年龄的频数分布及支持“生育二胎”人数如下表:
年龄 |
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
支持“生二胎” |
|
|
|
|
|
|
(1)由以上统计数据填下面
列联表,并问是否有
的把握认为以
岁为分界点对“生育二胎放开”政策的支持度有差异;
年龄不低于 | 年龄低于 | 合计 | |
支持 |
|
| |
不支持 |
|
| |
合计 |
(2)若对年龄在
的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?
参考数据:
,
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com