精英家教网 > 高中数学 > 题目详情
6.对于天气预报说“明天降水的概率为80%”的正确解释是(  )
A.明天上午下雨,下午不下雨
B.明天下雨的概率为80%
C.明天有的地方下雨,有的地方不下雨
D.明天下雨的时间一共是19.2小时

分析 根据概率的意义,即可得出结论.

解答 解:根据概率的意义,“明天降水的概率为80%”的正确解释是明天下雨的概率为80%,
故选B.

点评 本题考查根据概率的意义,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.化简:4sin40°-tan40°等于(  )
A.1B.$\sqrt{3}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.
广告费用X (万元)1234567
销售额y (百万元)2.93.33.64.44.85.25.9
根据表可得回归方程y=bx+a中的a为2.3,根据此模型预报广告费用为12万元时销售额为8.3万元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,在正三棱锥P-ABC中,D,E分别是AB,AC的中点,O为顶点P在底面ABC内的投影,有下列三个论断:①AC⊥PB;②AC∥平面POD;③AB⊥平面POD,其中正确论断的个数为(  )
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点A(-1,0),B(1,0),直线AM与直线BM相交于点M,直线AM与直线BM的斜率分别记为kAM与kBM,且kAM•kBM=-2
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)过定点F(0,1)作直线PQ与曲线C交于P,Q两点,△OPQ的面积是否存在最大值?若存在,求出△OPQ面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表资料:
日    期12月1日12月2日12月3日12月4日12月5日
温差x(°C)101113128
发芽数y(颗)2325302616
(1)请根据12月2日至12月4日的数据,求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$(其中已计算出$\widehat{b}$=$\frac{5}{2}$);
(2)若由线性回归方程得到的估计数据与所选出的检验数据(选取的检验数据是12月1日与12月5日
的两组数据)的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.关于下列命题:
①若函数y=2x+1的定义域是{x|x≤0},则它的值域是{y|y≤1};
②若函数y=$\frac{1}{x}$的定义域是{x|x>2},则它的值域是{y|y≤$\frac{1}{2}$};
③若函数y=x2的值域是{y|0≤y≤4},则它的定义域一定是{x|-2≤x≤2};
④若函数y=x+$\frac{1}{x}$的定义域是{x|x<0},则它的值域是{y|y≤-2}.
其中不正确的命题的序号是②③.(注:把你认为不正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若数列{an}满足前n项之和Sn=2an-4(n∈N*),bn+1=an+2bn且b1=2.求:
(1){bn} 的通项公式;
(2){bn} 的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知{an}的前n项和Sn=$\frac{{{n^2}+n}}{2}$+1,则数列{${\frac{1}{{{a_n}{a_{n+1}}}}$}的前99项和T99=$\frac{37}{50}$.

查看答案和解析>>

同步练习册答案