精英家教网 > 高中数学 > 题目详情

【题目】已知函数f (x)=ex﹣ax﹣1,其中e为自然对数的底数,a∈R.
(1)若a=e,函数g (x)=(2﹣e)x. ①求函数h(x)=f (x)﹣g (x)的单调区间;
②若函数F(x)= 的值域为R,求实数m的取值范围;
(2)若存在实数x1 , x2∈[0,2],使得f(x1)=f(x2),且|x1﹣x2|≥1,求证:e﹣1≤a≤e2﹣e.

【答案】
(1)解:a=e时,f(x)=ex﹣ex﹣1,

①h(x)=f(x)﹣g(x)=ex﹣2x﹣1,h′(x)=ex﹣2,

由h′(x)>0,得x>ln2,由h′(x)<0,解得:x<ln2,

故函数h(x)在(ln2,+∞)递增,在(﹣∞,ln2)递减;

②f′(x)=ex﹣e,

x<1时,f′(x)<0,f(x)在(﹣∞,1)递减,

x>1时,f′(x)>0,f(x)在(1,+∞)递增,

m≤1时,f(x)在(﹣∞,m]递减,值域是[em﹣em﹣1,+∞),

g(x)=(2﹣e)x在(m,+∞)递减,值域是(﹣∞,(2﹣e)m),

∵F(x)的值域是R,故em﹣em﹣1≤(2﹣e)m,

即em﹣2m﹣1≤0,(*),

由①可知m<0时,h(x)=em﹣2m﹣1>h(0)=0,故(*)不成立,

∵h(m)在(0,ln2)递减,在(ln2,1)递增,且h(0)=0,h(1)=e﹣3<0,

∴0≤m≤1时,h(m)≤0恒成立,故0≤m≤1;

m>1时,f(x)在(﹣∞,1)递减,在(1,m]递增,

故函数f(x)=ex﹣ex﹣1在(﹣∞,m]上的值域是[f(1),+∞),即[﹣1,+∞),

g(x)=(2﹣e)x在(m,+∞)上递减,值域是(﹣∞,(2﹣e)m),

∵F(x)的值域是R,∴﹣1≤(2﹣e)m,即1<m≤

综上,m的范围是[0, ]


(2)解:证明:f′(x)=ex﹣a,

若a≤0,则f′(x)>0,此时f(x)在R递增,

由f(x1)=f(x2),可得x1=x2,与|x1﹣x2|≥1矛盾,

∴a>0且f(x)在(﹣∞,lna]递减,在[lna,+∞)递增,

若x1,x2∈(﹣∞,lna],则由f(x1)=f(x2)可得x1=x2,与|x1﹣x2|≥1矛盾,

同样不能有x1,x2∈[lna,+∞),

不妨设0≤x1<x2≤2,则有0≤x1<lna<x2≤2,

∵f(x)在(x1,lna)递减,在(lna,x2)递增,且f(x1)=f(x2),

∴x1≤x≤x2时,f(x)≤f(x1)=f(x2),

由0≤x1<x2≤2且|x1﹣x2|≥1,得1∈[x1,x2],

故f(1)≤f(x1)=f(x2),

又f(x)在(﹣∞,lna]递减,且0≤x1<lna,故f(x1)≤f(0),

故f(1)≤f(0),同理f(1)≤f(2),

,解得:e﹣1≤a≤e2﹣e﹣1,

∴e﹣1≤a≤e2﹣e


【解析】(1)①求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;②求出函数的导数,通过讨论m的范围得到函数的值域,从而确定m的具体范围即可;(2)求出函数f(x)的导数,得到a>0且f(x)在(﹣∞,lna]递减,在[lna,+∞)递增,设0≤x1<x2≤2,则有0≤x1<lna<x2≤2,根据函数的单调性得到关于m的不等式组,解出即可.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的最大(小)值与导数的理解,了解求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在空间中有如下命题,其中正确的是(

A. 若直线ab共面,直线bc共面,则直线ac共面;

B. 若平面α内的任意直线m∥平面β,则平面α∥平面β

C. 若直线a与平面不垂直,则直线a与平面内的所有直线都不垂直;

D. 若点P到三角形三条边的距离相等,则点P在该三角形所在平面内的射影是该三角形的内心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为 ,各局比赛的结果都相互独立,第1局甲当裁判.
(1)求第4局甲当裁判的概率;
(2)X表示前4局中乙当裁判的次数,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,AD⊥平面PAB,AP⊥AB.
(1)求证:CD⊥AP;
(2)若CD⊥PD,求证:CD∥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)已知一次函数f(x)满足:f(1)=2, f(2x)=2f(x)-1.

(1) 求f(x)的解析式;

(2) 设, 若|g(x)|-af(x)+a≥0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)如图,在四棱锥PABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BADPAAD=2,ABBC=1.

(1)求点D到平面PBC的距离;

(2)设Q是线段BP上的动点,当直线CQDP所成的角最小时,求二面角B-CQ-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为等腰梯形,,已知,四边形为直角梯形,.

(1)证明:平面平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将边长为1的正方形沿对角线折起,使得平面平面,在折起后形成的三棱锥中,给出下列四种说法:

是等边三角形;②;③;④直线所成的角的大小为.其中所有正确的序号是( )

A. ①③B. ②④C. ①②③D. ①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,底面四边形ABCD为菱形,A1A=AB=2,∠ABC= ,E,F分别是BC,A1C的中点.
(1)求异面直线EF,AD所成角的余弦值;
(2)点M在线段A1D上, =λ.若CM∥平面AEF,求实数λ的值.

查看答案和解析>>

同步练习册答案