精英家教网 > 高中数学 > 题目详情
已知椭圆C的方程:
x2
4
+
y2
2
=1

(1)椭圆上一点H(
2
,1)
,AB是过椭圆中心的一条弦,且HA、HB与两坐标轴均不平行.求KHA•KHB的值;
(2)已知M(1,
6
2
)
,P、Q是椭圆C上的两个动点(P、Q与M均不重合),F为椭圆的左焦点,且|PF|,|MF|,|QF|依次成等差数列.求证:线段PQ的垂直平分线经过一个定点E,并求出E的坐标.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)设A(x,y),B(-x,-y),则KHAKHB=
y2-1
x2-2
x2
4
+
y2
2
=1
代入上式得KHAKHB=-
1
2

(2)设P(x1,y1),Q(x2,y2),由椭圆的标准方程为
x2
4
+
y2
2
=1,可知|PF|=2+
2
2
x1,同理|QF|=2+
2
2
x2,|MF|=
(1+
2
)2+(
6
2
)2
=2+
2
2
,从而x1+x2=2.由此能证明线段PQ的中垂线过定点A(
1
2
,0).
解答: (1)解:设A(x,y),B(-x,-y)
KHA=
y-1
x-
2
KHB=
-y-1
-x-
2

KHAKHB=
y2-1
x2-2

x2
4
+
y2
2
=1
代入上式
KHAKHB=-
1
2

(2)证明:设P(x1,y1),Q(x2,y2),
由椭圆的标准方程为
x2
4
+
y2
2
=1,
可知|PF|=2+
2
2
x1,同理|QF|=2+
2
2
x2
|MF|=
(1+
2
)2+(
6
2
)2
=2+
2
2

∵2|MF|=|PF|+|QF|,
∴2(2+
2
2
)=4+
2
2
(x1+x2),∴x1+x2=2.
(ⅰ)当x1≠x2时,由
x12+2y12=4
x22+2y22=4

得x
 
2
1
-x
 
2
2
+2(y
 
2
1
-y
 
2
2
)=0,
y1-y2
x1-x2
=-
1
2
x1+x2
y1+y2

设线段PQ的中点为N(1,n),由kPQ=
y1-y2
x1-x2
=-
1
2n

得线段PQ的中垂线方程为y-n=2n(x-1),
∴(2x-1)n-y=0,
该直线恒过一定点A(
1
2
,0).
(ⅱ)当x1=x2时,P(1,-
6
2
),Q(1,
6
2
)或P(1,
6
2
),Q(1,-
6
2
),
线段PQ的中垂线是x轴,也过点A(
1
2
,0).
综上,线段PQ的中垂线过定点A(
1
2
,0).
点评:本题考查两直线的斜率的乘积的求法,考查直线过定点的证明,解题时要认真审题,注意函数与方程思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2+cx+d共有三个零点分别是x=-1,x=2,x=3,且x<-1时,f(x)>0,则不等式f(x)<0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
4
-
y2
5
=1的左焦点F作直线l交双曲线于A、B两点,若|AB|=5,则这样的直线共有(  )
A、1条B、2条C、3条D、4条

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p≠0)及定点A(a,b),B(-a,0),ab≠0,b2≠2pa,M是抛物线上的点.设直线AM、BM与抛物线的另一个交点分别为M1、M2,当M变动时,直线M1M2恒过一个定点,此定点坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正实数a,b满足
1
a
+
2
b
=3,则(a+1)(b+2)的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

把:“将a,b,c三个正整数按照从大到小的顺序排列”的算法步骤补充完整.
第一步,输入3个正整数a,b,c
第二步,将a与b比较,并把小的赋给b,大者赋给a
第三步,
 

第四步,将b与c比较,并把小的赋给c,大者赋给b
第五步,按顺序输出a,b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

种植某种树苗,成活率为0.9,现采用随机模拟的方法估计该树苗种植5棵恰好4棵成活的概率,先由计算机产生0到9之间取整数值的随机数,指定1至9的数字代表成活,0代表不成活,再以每5个随机数为一组代表5次种植的结果.经随机模拟产生如下30组随机数:

据此估计,该树苗种植5棵恰好4棵成活的概率为(  )
A、0.30B、0.35
C、0.40D、0.50

查看答案和解析>>

科目:高中数学 来源: 题型:

一物体以速度v(t)=3t2-2t+3做直线运动,它在t=0和t=3这段时间内的位移是(  )
A、9B、18C、27D、36

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,且满足a(sinA-sinB)+bsinB=csinC.
(1)求角C的值;
(2)若a=1,且△ABC的面积为
3
,求c的值.

查看答案和解析>>

同步练习册答案