【题目】已知动圆过定点,它与轴相交所得的弦的长为,则满足要求的动圆其半径的最小值是_____________.
科目:高中数学 来源: 题型:
【题目】己知函数的零点构成一个公差为的等差数列,把函数的图像沿轴向左平移个单位,得到函数的图像,关于函数,下列说法正确的是( )
A. 在上是增函数
B. 其图像关于对称
C. 函数是奇函数
D. 在区间上的值域为[-2,1]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为积极响应国家“阳光体育运动”的号召,某学校在了解到学生的实际运动情况后,发起以“走出教室,走到操场,走到阳光”为口号的课外活动倡议。为调查该校学生每周平均体育运动时间的情况,从高一高二基础年级与高三三个年级学生中按照4:3:3的比例分层抽样,收集300位学生每周平均体育运动时间的样本数据(单位:小时),得到如图所示的频率分布直方图。
(1)据图估计该校学生每周平均体育运动时间.并估计高一年级每周平均体育运动时间不足4小时的人数;
(2)规定每周平均体育运动时间不少于6小时记为“优秀”,否则为“非优秀”,在样本数据中,有30位高三学生的每周平均体育运动时间不少于6小时,请完成下列列联表,并判断是否有99%的把握认为“该校学生的每周平均体育运动时间是否“优秀”与年级有关”.
基础年级 | 高三 | 合计 | |
优秀 | |||
非优秀 | |||
合计 | 300 |
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
附:K2,n=a+b+c+d.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线,点,点是平面直角坐标系内的动点,且点到直线的距离是点到点的距离的2倍.记动点的轨迹为曲线.
(1)求曲线的方程;
(2)过点的直线与曲线交于、两点,若(是坐标系原点)的面积为,求直线的方程;
(3)若(2)中过点的直线是倾斜角不为0的任意直线,仍记与曲线的交点为、,设点为线段的中点,直线与直线交于点,求的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c.满足2acosC+bcosC+ccosB=0.
(Ⅰ)求角C的大小;
(Ⅱ)若a=2,△ABC的面积为,求C的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥,底面为菱形,,为上的点,过的平面分别交,于点,,且平面.
(1)证明:;
(2)当为的中点,,与平面所成的角为,求与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程及曲线的直角坐标方程;
(2)设点,直线与曲线相交于两点,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校在2019的自主招生考试中,考生笔试成绩分布在,随机抽取200名考生成绩作为样本研究,按照笔试成绩分成5组,得到的如下的频率分布表:
组号 | 分数区间 | 频数 | 频率 |
1 | 70 | 0.35 | |
2 | 10 | 0.05 | |
3 | ① | 0.20 | |
4 | 60 | 0.30 | |
5 | 20 | ② |
(1)请先求出频率分布表中①、②位置的相应数据,再完成频率分布直方图;
(2)为了能选拨出最优秀的学生,该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3,4,5组各组抽取多少名学生进入第二轮面试;
(3)在(2)的前提下,从这6名学生中随机抽取2名学生进行外语交流面试,求这2名学生均来自同一组的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com