精英家教网 > 高中数学 > 题目详情

中,内角所对边长分别为.
(1)求的最大值;  (2)求函数的值域.

(1); (2)

解析试题分析:(1)由数量积的定义,又在中,可得到之间的一个等式,又由已知,可想到运用余弦定理,可找出之间满足的等式关系,最后运用基本不等式,就可求出的最大值; (2)对题中所给函数运用公式 进行化简,可得的形式,结合中所求的最大值,进而求出的范围,最后借助三角函数图象求出函数的最大值和最小值.
试题解析:(1),     2分
 所以 ,即的最大值为   4分
当且仅当时取得最大值          5分
(2)结合(1)得,, 所以  ,
又0< 所以0<             7分
        8分
因0<,所以    9分
  即时,        10分
   即时,        11分
所以,函数的值域为      12分
考点:1.向量的数量积;2.余弦定理;3.三角函数的图象和性质

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

行列式按第一列展开得,记函数,且的最大值是.
(1)求
(2)将函数的图像向左平移个单位,再将所得图像上各点的横坐标扩大为原来的倍,纵坐标不变,得到函数的图像,求上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最小正周期;
(2)求函数在区间上的函数值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(1+)sin2x+msin(x+)sin(x-).
(1)当m=0时,求f(x)在区间[]上的取值范围;
(2)当tan α=2时,f(α)=,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,若,请判断三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的定义域与最小正周期;
(Ⅱ)设,若,求的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量
(Ⅰ)求函数的最小正周期及对称轴方程;
(Ⅱ)在△ABC中,角A,B,C的对边分别是,b=1,△ABC的面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△中,角所对的边分别为,且.
(Ⅰ)若,求角
(Ⅱ)设,试求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量a=(2cosx,2sinx),b=(cosx,cosx),设函数f(x)=a•b-,求:
(1)f(x)的最小正周期和单调递增区间;
(2)若, 且α∈(,π). 求α.

查看答案和解析>>

同步练习册答案