精英家教网 > 高中数学 > 题目详情

已知函数.
(1)求函数的最小正周期;
(2)求函数在区间上的函数值的取值范围.

(1)   (2)

解析试题分析:(1)函数.通过二倍角的逆运算将单角升为二倍角,再化为一个三角函数的形式,从而求出函数的周期.(2)x的范围是所以正弦函数在是递增的.所以f(x)的范围是本题考查三角函数的单调性,最值,三角函数的化一公式,涉及二倍角的逆运算等.三角函数的问题要关注角度的变化,角度统一,二次式化为一次的,三角函数名称相互转化.切化弦,弦化切等数学思想.
试题解析:(1)因为        4分
              6分
的最小正周期为         8分
(2)当时,        10分   
故所求的值域为          12分
考点:1.三角函数的化一公式.2.二倍角公式.3.函数的单调性最值问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数的定义域为
(1)当时,求的单调区间;
(2)若,且,当为何值时,为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量
(Ⅰ)若,求的值;
(Ⅱ)在中,角的对边分别是,且满足,求函数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知tanα,是关于x的方程x2-kx+k2-3=0的两实根,且3π<α<π,
求cos(3π+α)-sin(π+α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的值;
(2)设,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数-sin(2x-).
(1)求函数的最大值和最小值;
(2)的内角的对边分别为,f()=,若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,且
的图象相邻两对称轴之间的距离等于
(1)求函数的解析式;
(2)在△ABC中,分别为角的对边,,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,内角所对边长分别为.
(1)求的最大值;  (2)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求的值;
(Ⅱ)求的最大值和最小值.

查看答案和解析>>

同步练习册答案