精英家教网 > 高中数学 > 题目详情

定义在集合D上的函数如果同时满足下列条件:①在集合D上单调递减或递增。②存在区间使上的值域是,那么叫做闭函数。

(1)求闭函数符合条件②的区间

(2)已知是闭函数,求实数的取值范围。

解:(1)由上为减函数,得,可得

所求区间是.   

(2)设函数符合条件②的区间为,则

,故是方程的两个实根,

命题等价于有两个不等实根.

时,   解得

;当时,这时,无解.

所以的取值范围是.  

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在集合D上的函数,且-1<f′(x)<0.
(1)若f(x)=-
x
2
+asinx
,在[
π
2
,π
]([
π
2
,π
]⊆D)上的最大值为
1-π
4
,试求不等式|ax+1|<a的解集.
(2)若对于定义域中任意的x1,x2,存在正数ε,使|x1-1|<
ε
2
且|x2-1|<
ε
2
,求证:|f(x1)-f(x2)|<ε.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在集合D上的函数y=f(x),若f(x)在D上具有单调性,且存在区间[a,b]⊆D,使当x∈[a,b]时,f(x)的值域是[a,b],则称函数f(x)是D上的正函数,区间[a,b]称为f(x)的“等域区间”.已知函数f(x)=
x
是[0,+∞)上的正函数,则f(x)的等域区间为
[0,1]
[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在集合D上的函数y=f(x),若f(x)在D上具有单调性,且存在区间[a,b]⊆D(其中a<b),使当x∈[a,b]时,
f(x)的值域是[a,b],则称函数f(x)是D上的正函数,区间[a,b]称为f(x)的“等域区间”.
(1)已知函数f(x)=
x
是[0,+∞)上的正函数,试求f(x)的等域区间.
(2)试探究是否存在实数k,使函数g(x)=x2+k是(-∞,0)上的正函数?若存在,求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在集合D上的函数,若对集合D中的任意两数x1,x2恒有f(
1
4
x1+
3
4
x2)<
1
4
f(x1)+
3
4
f(x2)
成立,则f(x)是定义在D上的β函数.
(1)试判断f(x)=x2是否是其定义域上的β函数?
(2)设f(x)是定义在R上的奇函数,求证:f(x)不是定义在R上的β函数.
(3)设f(x)是定义在集合D上的函数,若对任意实数α∈[0,1]以及集合D中的任意两数x1,x2恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),则称f(x)是定义在D上的α-β函数.已知f(x)是定义在R上的α-β函数,m是给定的正整数,设an=f(n),n=1,2,3…m且a0=0,am=2m,记∫=a1+a2+a3+…+am,对任意满足条件的函数f(x),求∫的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在集合D上的函数y=f(x),若f(x)在D上具有单调性且存在区间[a,b]⊆D(其中a<b)使当x∈[a,b]时,f(x)的值域是[a,b],则称函数f(x)是D上的“正函数”,区间[a,b]称为f(x)的“等域区间”.
(1)已知函数f(x)=x3是正函数,试求f(x)的所有等域区间;
(2)若g(x)=
x+2
+k
是正函数,试求实数k的取值范围;
(3)是否存在实数a,b(a<b<1)使得函数f(x)=|1-
1
x
|
是[a,b]上的“正函数”?若存在,求出区间[a,b],若不存在,说明理由.

查看答案和解析>>

同步练习册答案