精英家教网 > 高中数学 > 题目详情
19.已知f(x)=$\frac{2x}{{x}^{2}+6}$.
(1)若f(x)>k的解集为{x|x<-3或x>-2},求k的值;
(2)若对任意x<0,f(x)≥t恒成立,求t的取值范围.

分析 (1)得到-3,-2是方程$\frac{2x}{{x}^{2}+6}$-k=0的根,将x=-2或-3代入方程求出k的值即可;
(2)根据函数的单调性求出f(x)的最小值,从而求出k的范围即可.

解答 解:(1)f(x)=$\frac{2x}{{x}^{2}+6}$,若f(x)>k的解集为{x|x<-3或x>-2},
则-3,-2是方程$\frac{2x}{{x}^{2}+6}$-k=0的根,
解得:k=-$\frac{2}{5}$;
(2)若对任意x<0,f(x)≥t恒成立,
即若对任意x<0,f(x)min≥t,f′(x)=$\frac{-{2x}^{2}+12}{{{(x}^{2}+6)}^{2}}$,
令f′(x)>0,解得:-$\sqrt{6}$<x<0,
令f′(x)<0,解得:x<-$\sqrt{6}$,
故f(x)在(-∞,-$\sqrt{6}$)递减,在(-$\sqrt{6}$,0)递增,
∴f(x)min=f(-$\sqrt{6}$)=-$\frac{\sqrt{6}}{6}$,
∴t≤-$\frac{\sqrt{6}}{6}$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及不等式问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.将数字1,2,3,4,5,6书写在每一个骰子的六个表面上,做成6枚一样的骰子.分别取三枚同样的这种骰子叠放成如图A和B所示的两个柱体,则柱体A和B的表面(不含地面)数字之和分别是(  )
A.47,48B.47,49C.49,50D.50,49

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=x2+2a|x|+a2-6的图象与x轴有三个不同的交点,函数g(x)=f(x)-b有4个零点,则实数b的取值范围是(-6,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,OM,ON是两条海岸线,Q为海中一个小岛,A为海岸线OM上的一个码头.已知tan∠MON=-3,OA=6km,Q到海岸线OM,ON的距离分别为3km,$\frac{{6\sqrt{10}}}{5}$km.现要在海岸线ON上再建一个码头,使得在水上旅游直线AB经过小岛Q.
(1)求水上旅游线AB的长;
(2)若小岛正北方向距离小岛6km处的海中有一个圆形强水波P,从水波生成th时的半径为r=3$\sqrt{at}$(a为大于零的常数).强水波开始生成时,一游轮以18$\sqrt{2}$km/h的速度自码头A开往码头B,问实数a在什么范围取值时,强水波不会波及游轮的航行.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,某房产开发商计划在一正方形土地ABCD内建造一个三角形住宅区,在其余土地种植绿化,住宅区形状为三角形APQ,其中P位于边CB上,Q位于边CD上.已知,∠PAQ=$\frac{π}{4}$,设∠PAB=θ,记绿化率L=1-$\frac{△PAQ面积}{正方形ABCD面积}$,若L越大,则住宅区绿化越好.
(1)求L(θ)关于θ的函数解析式;
(2)问当θ取何值时,L有最大值?并求出L的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.一个几何体的三视图如图所示(单位:cm),则该几何体的体积为16cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图是一个三棱锥的三视图,则该三棱锥的外接球的表面积为(  )
A.$\frac{\sqrt{3}}{2}$πB.πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.我国是世界上严重缺水的国家.某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中a的值;
(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)估计居民月均水量的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)的定义域是R,且f(x)>0,对于任意实数m,n恒有f(m+n)=f(m)f(n),当x>0时,f(x)>1,试判断f(x)在R上的单调性,并给以证明.

查看答案和解析>>

同步练习册答案