精英家教网 > 高中数学 > 题目详情
10.若函数f(x)=x2+2a|x|+a2-6的图象与x轴有三个不同的交点,函数g(x)=f(x)-b有4个零点,则实数b的取值范围是(-6,0).

分析 根据函数f(x)是偶函数,结合函数与x轴交点个数得到f(0)=0,根据函数与方程之间的关系转化为两个函数的交点问题进行求解即可.

解答 解:∵函数f(x)是偶函数,
∴f(x)=x2+2a|x|+a2-6的图象与x轴有三个不同的交点,
则必有f(0)=0,
即a2-6=0,即a2=6,
即a=±$\sqrt{6}$,
当a=$\sqrt{6}$时,f(x)=x2+2$\sqrt{6}$|x|,此时函数f(x)只有1个零点,不满足条件.
当a=-$\sqrt{6}$时,f(x)=x2-2$\sqrt{6}$|x|,此时函数f(x)有3个零点,满足条件,
此时f(x)=x2-2$\sqrt{6}$|x|=(|x|-$\sqrt{6}$)2-6,
∴f(x)≥-6,
由g(x)=f(x)-b=0得b=f(x),
作出函数f(x)的图象如图:
要使函数g(x)=f(x)-b有4个零点,
则-6<b<0,
故答案为:(-6,0)

点评 本题主要考查函数与方程的应用,根据函数f(x)与x轴有三个不同的交点,得到f(0)=0是解决本题的关键.注意要利用数形结合进行求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知四棱锥P-ABCD的底面是菱形,PA⊥面ABCD,PA=AD=2,∠ABC=60°,E为PD中点.
(1)求证:PB∥平面ACE;
(2)求二面角E-AC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知实数x,y满足x2+y2=4,则4(x-$\frac{1}{2}$)2+(y-1)2+4xy的最大值是22+4$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点.
(1)求证:直线AE⊥平面A1D1E;
(2)求二面角E-AD1-A1的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].
(Ⅰ)求m的值;
(Ⅱ)设a,b,c为正数,且a+b+4c=m,求$\sqrt{a}$+$\sqrt{b}$+$\sqrt{2c}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C:(x-3)2+(y-3)2=4及点A(1,1),M为圆C上的任意点N在线段MA的延长线上,且$\overrightarrow{MA}$=2$\overrightarrow{AN}$.
(1)求点N的轨迹方程;
(2)求|$\overrightarrow{AM}$+$\overrightarrow{AN}$|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设点M在圆C:(x-4)2+(y-4)2=8上运动,点A(6,-1),O为原点,则MO+2MA的最小值为10-2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=$\frac{2x}{{x}^{2}+6}$.
(1)若f(x)>k的解集为{x|x<-3或x>-2},求k的值;
(2)若对任意x<0,f(x)≥t恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在下列区间中,函数f(x)=ex+x-3的零点所在的区间为(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

同步练习册答案