精英家教网 > 高中数学 > 题目详情
1.已知实数x,y满足x2+y2=4,则4(x-$\frac{1}{2}$)2+(y-1)2+4xy的最大值是22+4$\sqrt{5}$.

分析 利用圆的参数方程,结合配方法,即可求出4(x-$\frac{1}{2}$)2+(y-1)2+4xy的最大值.

解答 解:由题意,设x=2cosα,y=2sinα,
则t=2x+y=4cosα+2sinα=2$\sqrt{5}$sin(α+θ)∈[-2$\sqrt{5}$,2$\sqrt{5}$].
4(x-$\frac{1}{2}$)2+(y-1)2+4xy=4x2+4xy+y2-4x-2y+2=(2x+y)2-2(2x+y)+2=(t-1)2+1
∴t=-2$\sqrt{5}$时,4(x-$\frac{1}{2}$)2+(y-1)2+4xy的最大值是22+4$\sqrt{5}$.
故答案为:22+4$\sqrt{5}$.

点评 本题考查4(x-$\frac{1}{2}$)2+(y-1)2+4xy的最大值,考查圆的参数方程,考查配方法的运用,正确变形是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{47}{6}$B.$\frac{15}{2}$C.$\frac{23}{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某几何体的三视图如图所示,则该几何体的体积为$\frac{π+1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将数字1,2,3,4,5,6书写在每一个骰子的六个表面上,做成6枚一样的骰子.分别取三枚同样的这种骰子叠放成如图A和B所示的两个柱体,则柱体A和B的表面(不含地面)数字之和分别是(  )
A.47,48B.47,49C.49,50D.50,49

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知AB=AC,圆O是△ABC的外接圆,CD⊥AB,CE是圆O的直径.过点B作圆O的切线交AC的延长线于点F.
(Ⅰ)求证:AB•CB=CD•CE;
(Ⅱ)若$BC=\sqrt{2}$,$BF=2\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-alnx,a∈R.
(Ⅰ)若f(x)在x=1处取得极值,求a的值;
(Ⅱ)求f(x)在区间[1,+∞)上的最小值;
(Ⅲ)在(Ⅰ)的条件下,若h(x)=x2-f(x),求证:当1<x<e2时,恒有$x<\frac{4+h(x)}{4-h(x)}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)(x∈R),f′(x)存在,记g(x)=f′(x),且g′(x)也存在,g′(x)<0.
(1)求证:f(x)≤f(x0)+f′(x0)(x-x0);(x0∈R)
(2)设${λ_i}∈{R^+}(i=1,2,3,…$n),且λ12+…+λn=1,xi∈R(i=1,…,n)(n∈N+
求证:λ1f(x1)+λ2f(x2)+…+λnf(xn)≤f(λ1x12x2+…+λnxn
(3)已知a,f(a),f[f(a)],f{f[(f(a)]}是正项的等比数列,求证:f(a)=a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=x2+2a|x|+a2-6的图象与x轴有三个不同的交点,函数g(x)=f(x)-b有4个零点,则实数b的取值范围是(-6,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图是一个三棱锥的三视图,则该三棱锥的外接球的表面积为(  )
A.$\frac{\sqrt{3}}{2}$πB.πC.D.

查看答案和解析>>

同步练习册答案