7£®Èçͼ£¬OM£¬ONÊÇÁ½Ìõº£°¶Ïߣ¬QΪº£ÖÐÒ»¸öСµº£¬AΪº£°¶ÏßOMÉϵÄÒ»¸öÂëÍ·£®ÒÑÖªtan¡ÏMON=-3£¬OA=6km£¬Qµ½º£°¶ÏßOM£¬ONµÄ¾àÀë·Ö±ðΪ3km£¬$\frac{{6\sqrt{10}}}{5}$km£®ÏÖÒªÔÚº£°¶ÏßONÉÏÔÙ½¨Ò»¸öÂëÍ·£¬Ê¹µÃÔÚË®ÉÏÂÃÓÎÖ±ÏßAB¾­¹ýСµºQ£®
£¨1£©ÇóË®ÉÏÂÃÓÎÏßABµÄ³¤£»
£¨2£©ÈôСµºÕý±±·½Ïò¾àÀëСµº6km´¦µÄº£ÖÐÓÐÒ»¸öÔ²ÐÎǿˮ²¨P£¬´ÓË®²¨Éú³ÉthʱµÄ°ë¾¶Îªr=3$\sqrt{at}$£¨aΪ´óÓÚÁãµÄ³£Êý£©£®Ç¿Ë®²¨¿ªÊ¼Éú³Éʱ£¬Ò»ÓÎÂÖÒÔ18$\sqrt{2}$km/hµÄËÙ¶È×ÔÂëÍ·A¿ªÍùÂëÍ·B£¬ÎÊʵÊýaÔÚʲô·¶Î§È¡ÖµÊ±£¬Ç¿Ë®²¨²»»á²¨¼°ÓÎÂֵĺ½ÐУ®

·ÖÎö £¨1£©Óɵ㵽ֱÏߵľàÀ룬½áºÏÖ±ÏßAQµÄ·½³Ì£¬¼´¿ÉÇó³öABµÄ³¤£»
£¨2£©Ç¿Ë®²¨²»»á²¨¼°ÓÎÂֵĺ½Ðм´$P{C^2}£¾{r^2}¶Ôt¡Ê[{0£¬\frac{1}{2}}]ºã³ÉÁ¢$£¬´úÈë½øÐзÖÀàÌÖÂÛ£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©ÒÔµãO Îª×ø±êÔ­µã£¬Ö±ÏßOM Ϊx Öᣬ½¨Á¢Ö±½Ç×ø±êϵÈçͼËùʾ£®
ÔòÓÉÌâÉèµÃ£ºA£¨6£¬0£©£¬Ö±ÏßON µÄ·½³ÌΪy=-3x£¬Q£¨x0£¬3£©£¨x0£¾0£©£®
ÓÉ$\frac{{|{3{x_0}+3}|}}{{\sqrt{10}}}=\frac{{6\sqrt{10}}}{5}$£¬¼°x0£¾0 µÃx0=3£¬¡àQ£¨3£¬3£©£®
¡àÖ±ÏßAQ µÄ·½³ÌΪy=-£¨x-6£©£¬¼´x+y-6=0£¬
ÓÉ$\left\{{\begin{array}{l}{y=-3x}\\{x+y-6=0}\end{array}}\right.$ µÃ$\left\{{\begin{array}{l}{x=-3}\\{y=9}\end{array}}\right.$ ¼´B£¨-3£¬9£©£¬
¡à$AB=\sqrt{{{£¨{-3-6}£©}^2}+{9^2}}=9\sqrt{2}$£¬
¼´Ë®ÉÏÂÃÓÎÏßAB µÄ³¤Îª$9\sqrt{2}km$£®
£¨2£©ÉèÊÔÑé²úÉúµÄǿˮ²¨Ô²P£¬
ÓÉÌâÒâ¿ÉµÃP£¨3£¬9£©£¬Éú³Ét Сʱʱ£¬ÓÎÂÖÔÚÏß¶ÎAB ÉϵĵãC ´¦£¬Ôò
AC=18$\sqrt{2}$t£¬0$¡Üt¡Ü\frac{1}{2}$£¬¡àC£¨6-18t£¬18t£©£®
ǿˮ²¨²»»á²¨¼°ÓÎÂֵĺ½Ðм´$P{C^2}£¾{r^2}¶Ôt¡Ê[{0£¬\frac{1}{2}}]ºã³ÉÁ¢$£®
PC2=£¨18t-3£©2+£¨18t-9£©2£¾r2=9at£¬
µ±t=0 ʱ£¬ÉÏʽºã³ÉÁ¢£¬
µ±$t¡Ù0ʱ£¬¼´t¡Ê£¨{0£¬\frac{1}{2}}]ʱ$£¬$a£¼72t+\frac{10}{t}-48$.$Áîg£¨t£©=72t+\frac{10}{t}-48£¬t¡Ê£¨{0£¬\frac{1}{2}}]$£¬$g£¨t£©=72t+\frac{10}{t}-48¡Ý24\sqrt{5}-48$£¬µ±ÇÒ½öµ±$t=\frac{{\sqrt{5}}}{6}¡Ê£¨0£¬\frac{1}{2}]$ ʱµÈºÅ³ÉÁ¢£¬
ËùÒÔ£¬ÔÚ0£¼a£¼24$\sqrt{5}$-48 ʱr£¼PC ºã³ÉÁ¢£¬Ò༴ǿˮ²¨²»»á²¨¼°ÓÎÂֵĺ½ÐУ®

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÔ²µÄλÖùØÏµÔÚÉú²úÉú»îÖеÄʵ¼ÊÓ¦Óã¬×¢ÒâÔ²µÄÐÔÖÊ¡¢Ö±Ïß·½³ÌµÄºÏÀíÔËÓÃÊǽâÌâµÄ¹Ø¼ü£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÈçͼËùʾ£¬Æ½ÃæËıßÐÎADEFÓëÌÝÐÎABCDËùÔ򵀮½Ã滥Ïà´¹Ö±£¬AD¡ÍCD£¬AD¡ÍED£¬AF¡ÎDE£¬AB¡ÎCD£¬CD=2AB=2AD=2ED=xAF£®
£¨¢ñ£©ÈôËĵãF¡¢B¡¢C¡¢E¹²Ã棬AB=a£¬ÇóxµÄÖµ£»
£¨¢ò£©ÇóÖ¤£ºÆ½ÃæCBE¡ÍÆ½ÃæEDB£»
£¨¢ó£©µ±x=2ʱ£¬Çó¶þÃæ½ÇF-EB-CµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®³¤·½ÌåABCD-A1B1C1D1ÖУ¬AB=BC=1£¬AA1=2£¬EÊDzàÀâBB1µÄÖе㣮
£¨1£©ÇóÖ¤£ºÖ±ÏßAE¡ÍÆ½ÃæA1D1E£»
£¨2£©Çó¶þÃæ½ÇE-AD1-A1µÄÆ½Ãæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÔ²C£º£¨x-3£©2+£¨y-3£©2=4¼°µãA£¨1£¬1£©£¬MΪԲCÉϵÄÈÎÒâµãNÔÚÏß¶ÎMAµÄÑÓ³¤ÏßÉÏ£¬ÇÒ$\overrightarrow{MA}$=2$\overrightarrow{AN}$£®
£¨1£©ÇóµãNµÄ¹ì¼£·½³Ì£»
£¨2£©Çó|$\overrightarrow{AM}$+$\overrightarrow{AN}$|µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÉèµãMÔÚÔ²C£º£¨x-4£©2+£¨y-4£©2=8ÉÏÔ˶¯£¬µãA£¨6£¬-1£©£¬OΪԭµã£¬ÔòMO+2MAµÄ×îСֵΪ10-2$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=sin¦Øx£¨sin¦Øx+$\sqrt{3}$cos¦Øx£©£¬£¨¦Ø£¾0£©ÇÒº¯Êýy=f£¨x£©µÄ×îСÕýÖÜÆÚΪ¦Ð£®
£¨1£©Çóf£¨$\frac{¦Ð}{12}$£©µÄÖµ£»
£¨2£©Çóº¯Êýy=f£¨x+$\frac{¦Ð}{12}$£©ÔÚÇø¼ä[-$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{3}$]ÉϵÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªf£¨x£©=$\frac{2x}{{x}^{2}+6}$£®
£¨1£©Èôf£¨x£©£¾kµÄ½â¼¯Îª{x|x£¼-3»òx£¾-2}£¬ÇókµÄÖµ£»
£¨2£©Èô¶ÔÈÎÒâx£¼0£¬f£¨x£©¡Ýtºã³ÉÁ¢£¬ÇótµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èô$\frac{1}{a}$£¼$\frac{1}{b}$£¼0£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®a2£¾b2B£®ab£¾b2C£®a-b£¼0D£®|a|+|b|=|a+b|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®·½³Ìx2+xy=xµÄÇúÏßÊÇ£¨¡¡¡¡£©
A£®Á½ÌõÖ±ÏßB£®Ò»ÌõÖ±Ïß
C£®Ò»¸öµãD£®Ò»¸öµãºÍÒ»ÌõÖ±Ïß

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸