分析 (Ⅰ)当n=1时,即可求得a1=1,当n≥2时,4Sn-1=(an-1+1)2,4Sn=(an+1)2,两式相减可得:(an+an-1)(an-an-1-2)=0,可知:an-an-1=2,数列{an}是以2为公差,以1为首项的等差数列,即可求得数列{an}的通项公式;
(Ⅱ)$\frac{2}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{2n-1}$-$\frac{1}{2n+1}$,根据“裂项法”即可求得Tn=1-$\frac{1}{2n+1}$,Tn<1,由Tn≥T1=$\frac{2}{3}$.即可证明$\frac{2}{3}$≤Tn<1(n∈N+).
解答 解:(Ⅰ)当n=1时,4a1=(a1+1)2,解得:a1=1,
当n≥2时,4Sn-1=(an-1+1)2,4Sn=(an+1)2,
两式相减得:(an+an-1)(an-an-1-2)=0,
∵an>0,
∴an-an-1=2,
∴数列{an}是以2为公差,以1为首项的等差数列,
∴an=2n-1;
证明:(Ⅱ)$\frac{2}{{a}_{n}•{a}_{n+1}}$=$\frac{2}{(2n-1)(2n+1)}$=$\frac{1}{2n-1}$-$\frac{1}{2n+1}$,
∴Tn=(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+($\frac{1}{5}$-$\frac{1}{7}$)+…+($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
=1-$\frac{1}{2n+1}$,
∴Tn<1,
$\frac{1}{{a}_{n}•{a}_{n+1}}$>0,
∴Tn≥T1=$\frac{2}{3}$.
∴$\frac{2}{3}$≤Tn<1(n∈N+).
点评 本题考查等差数列的通项公式,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3x+2y+2=0 | B. | 3x-2y+10=0 | C. | 2x+3y-2=0 | D. | 2x-3y+10=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 40 | B. | 48 | C. | 56 | D. | 62 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com