精英家教网 > 高中数学 > 题目详情
16.(1)若f(x+$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$,则f(x)=x2-2.
(2)若f(2x-1)=x2+x,则f(x)=$\frac{1}{4}{x}^{2}+x+\frac{3}{4}$.

分析 (1)配凑法,令x+$\frac{1}{x}$=t,那么x2+$\frac{1}{{x}^{2}}$=(x+$\frac{1}{x}$)2-2=t2-2,从而得到f(x)的解析式.
(2)换元法,令2x-1=t,则x=$\frac{1}{2}$(t+1),代入化简即可得到答案.

解答 解:(1)配凑法,令x+$\frac{1}{x}$=t,那么:x2+$\frac{1}{{x}^{2}}$=(x+$\frac{1}{x}$)2-2=t2-2,即f(t)=t2-2.
所以:f(x)=x2-2.
故答案为:f(x)=x2-2.
(2换元法,令2x-1=t,则x=$\frac{1}{2}$(t+1),
那么:f(2x-1)=x2+x化简为:f(t)=$\frac{1}{4}(t+1)^{2}+\frac{1}{2}(t+1)$=$\frac{1}{4}{t}^{2}+t+\frac{3}{4}$
所以:f(x)=$\frac{1}{4}{x}^{2}+x+\frac{3}{4}$
故答案为:f(x)=$\frac{1}{4}{x}^{2}+x+\frac{3}{4}$

点评 本题考查了求解析式常用的方法:配凑法,换元法.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.如果f($\frac{1}{x}$)=$\frac{x}{1-x}$,则当x≠0且x≠1时,f(x)=(  )
A.$\frac{1}{x}$(x≠0且x≠1)B.$\frac{1}{x-1}$(x≠0且x≠1)C.$\frac{1}{1-x}$(x≠0且x≠1)D.$\frac{1}{x}$-1(x≠0且x≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知某物体的运动方程是s=$\frac{{t}^{3}}{9}$+t,则当t=3s时的瞬时速度是(  )
A.2m/sB.3m/sC.4m/sD.5m/s

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的极坐标为(5,0),点M的极坐标为(4,$\frac{π}{2}$),若直线l过点P,且倾斜角为$\frac{π}{3}$,圆C以M为圆心,4为半径.
(1)求直线l和圆C的极坐标方程;
(2)试判断直线l和圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=mx3+nx2的图象在点(-1,2)处的切线恰好与直线3x+2y=0平行,若f(x)在区间[t,t+1]上单调递减,则实数t的取值范围为(  )
A.(-2,-$\frac{3}{2}$)B.[-2,-$\frac{3}{2}$]C.(-2,-1)D.[-2,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若A={x|x2+1=0,x∈R},B={y|y=x,x∈R},则A∩B=∅,A∪B=R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知正项数列{an}的前n项和为Sn,且4Sn=(an+1)2(n∈N+).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn为数列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的前n项和,证明:$\frac{2}{3}$≤Tn<1(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),经过椭圆C上一点P的直线l:y=-$\frac{{\sqrt{2}}}{4}$x+$\frac{{3\sqrt{2}}}{2}$与椭圆C有且只有一个公共点,且点P横坐标为2.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若AB是椭圆的一条动弦,且|AB|=$\frac{5}{2}$,O为坐标原点,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.执行如图所示的程序框图,输出的S的值是(  )
A.-6B.10C.-15D.11

查看答案和解析>>

同步练习册答案