分析 (1)配凑法,令x+$\frac{1}{x}$=t,那么x2+$\frac{1}{{x}^{2}}$=(x+$\frac{1}{x}$)2-2=t2-2,从而得到f(x)的解析式.
(2)换元法,令2x-1=t,则x=$\frac{1}{2}$(t+1),代入化简即可得到答案.
解答 解:(1)配凑法,令x+$\frac{1}{x}$=t,那么:x2+$\frac{1}{{x}^{2}}$=(x+$\frac{1}{x}$)2-2=t2-2,即f(t)=t2-2.
所以:f(x)=x2-2.
故答案为:f(x)=x2-2.
(2换元法,令2x-1=t,则x=$\frac{1}{2}$(t+1),
那么:f(2x-1)=x2+x化简为:f(t)=$\frac{1}{4}(t+1)^{2}+\frac{1}{2}(t+1)$=$\frac{1}{4}{t}^{2}+t+\frac{3}{4}$
所以:f(x)=$\frac{1}{4}{x}^{2}+x+\frac{3}{4}$
故答案为:f(x)=$\frac{1}{4}{x}^{2}+x+\frac{3}{4}$
点评 本题考查了求解析式常用的方法:配凑法,换元法.属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{x}$(x≠0且x≠1) | B. | $\frac{1}{x-1}$(x≠0且x≠1) | C. | $\frac{1}{1-x}$(x≠0且x≠1) | D. | $\frac{1}{x}$-1(x≠0且x≠1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2m/s | B. | 3m/s | C. | 4m/s | D. | 5m/s |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,-$\frac{3}{2}$) | B. | [-2,-$\frac{3}{2}$] | C. | (-2,-1) | D. | [-2,-1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com