·ÖÎö £¨¢ñ£©ÓÉpµÄºá×ø±ê¿ÉµÃPµÄ×ø±ê£¬´úÈëÍÖÔ²·½³Ì£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÓÉÅбðʽµÈÓÚ0µÃµ½a£¬b¹ØÏµ£¬½øÒ»²½ÇóµÃa£¬bµÄÖµ£¬ÔòÍÖÔ²CµÄ±ê×¼·½³Ì¿ÉÇó£»
£¨¢ò£©ÉèÖ±ÏßAB·½³ÌΪ£ºy=kx+b£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÀûÓÃÏÒ³¤¹«Ê½ÇóµÃk¡¢bµÄ¹ØÏµ£¬Çó³öÔµãOµ½Ö±ÏßABµÄ¾àÀ룬°Ñ¡÷AOBµÄÃæ»ý»¯Îªº¬ÓÐkµÄº¯Êý£¬È»ºóÀûÓû»Ôª·¨ÇóµÃ×îÖµ£®
½â´ð ½â£º£¨¢ñ£©¡ßP£¨2£¬$\sqrt{2}$£©£¬¡à$\frac{4}{{a}^{2}}+\frac{2}{{b}^{2}}=1$£¬¢Ù![]()
ÁªÁ¢$\left\{\begin{array}{l}{{b}^{2}{x}^{2}+{a}^{2}{y}^{2}={a}^{2}{b}^{2}}\\{y=-\frac{\sqrt{2}}{4}x+\frac{3}{2}\sqrt{2}}\end{array}\right.$£¬µÃ${b}^{2}{x}^{2}+{a}^{2}£¨-\frac{\sqrt{2}}{4}x+\frac{3\sqrt{2}}{2}£©^{2}={a}^{2}{b}^{2}$£¬
»¯¼òµÃ£º$£¨{b}^{2}+\frac{1}{8}{a}^{2}£©{x}^{2}-$$\frac{3}{2}{a}^{2}x+\frac{9}{2}{a}^{2}-{a}^{2}{b}^{2}=0$£®
ÓÉ¡÷=$\frac{9}{4}{a}^{4}-4£¨{b}^{2}+\frac{1}{8}{a}^{2}£©£¨\frac{9}{2}{a}^{2}-{a}^{2}{b}^{2}£©=0$£¬¢Ú
ÁªÁ¢¢Ù¢ÚµÃ£ºa2=12£¬b2=3£¬
¡àÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{3}=1$£»
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±ÏßAB·½³ÌΪ£ºy=kx+b£¬
ÁªÁ¢$\left\{\begin{array}{l}{{x}^{2}+4{y}^{2}=12}\\{y=kx+b}\end{array}\right.$£¬µÃ£¨4k2+1£©x2+8kbx+4£¨b2-3£©=0£®
¹Ê${x}_{1}+{x}_{2}=-\frac{8kb}{1+4{k}^{2}}£¬{x}_{1}{x}_{2}=\frac{4£¨{b}^{2}-3£©}{1+4{k}^{2}}$£¬
ÓÉ$\frac{25}{4}=|AB{|}^{2}=£¨1+{k}^{2}£©£¨{x}_{2}-{x}_{1}£©^{2}=£¨1+{k}^{2}£©$$[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]$£¬
µÃ${b}^{2}=3£¨1+4{k}^{2}£©-\frac{25£¨1+4{k}^{2}£©^{2}}{64£¨1+{k}^{2}£©}$£¬
¹ÊÔµãOµ½Ö±ÏßABµÄ¾àÀëd=$\frac{|b|}{\sqrt{1+{k}^{2}}}$£¬¡àS=$\frac{5}{4}•\frac{|b|}{\sqrt{1+{k}^{2}}}$£¬
Áîu=$\frac{1+4{k}^{2}}{1+{k}^{2}}$£¬Ôò${S}^{2}=-\frac{625}{1024}£¨{u}^{2}-\frac{192}{25}u£©=-\frac{625}{1024}£¨u-\frac{96}{25}£©^{2}+9$£®
ÓÖ¡ß$u=\frac{1+4{k}^{2}}{1+{k}^{2}}=4-\frac{3}{1+{k}^{2}}$¡Ê[1£¬4£©£¬µ±u=$\frac{96}{25}$ʱ£¬S2max=9£»
µ±Ð±Âʲ»´æÔÚʱ£¬¡÷AOBÃæ»ýµÄ×î´óֵΪ$\frac{5\sqrt{23}}{8}$£®
×ÛÉÏ¿ÉÖª£¬¡÷AOBÃæ»ýµÄ×î´óֵΪ3£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÁËÖ±ÏßÓëÍÖԲλÖùØÏµµÄÓ¦Óã¬ÑµÁ·ÁË»»Ôª·¨Çóº¯ÊýµÄ×îÖµ£¬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 40 | B£® | 48 | C£® | 56 | D£® | 62 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -5 | B£® | -4 | C£® | -1 | D£® | 1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com