精英家教网 > 高中数学 > 题目详情
3.如图,边长为2的正方形内有一不规则阴影部分,随机向正方形内投入200粒芝麻,恰好60粒落入阴影部分,则不规则图形的面积为1.2.

分析 根据几何概型的计算公式,列出豆子落在阴影区域内的概率与阴影部分面积及正方形面积之间的关系.

解答 解:由题意,设不规则图形的面积为S,则$\frac{S}{4}=\frac{60}{200}$,
∴S=1.2.
故答案为:1.2.

点评 本题考查了几何概型的应用:利用几何概型的意义进行模拟试验,估算不规则图形面积的大小,关键是要根据几何概型的计算公式,探究不规则图形面积与已知的规则图形的面积之间的关系,及它们与模拟试验产生的概率(或频数)之间的关系,并由此列出方程,解方程即可得到答案.

练习册系列答案
相关习题

科目:高中数学 来源:2017届河北衡水中学高三上学期调研三考数学(理)试卷(解析版) 题型:选择题

已知实数满足,则的取值范围为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果a>b,那么下列不等式中正确的是(  )
A.$\frac{1}{a}>\frac{1}{b}$B.a2>b2C.lg(|a|+1)>lg(|b|+1)D.2a>2b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,0<α<π),以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相同的长度单位,建立极坐标系.曲线C的极坐标方程为ρsin2θ=4cosθ.
(1)求曲线C的直角坐标方程:
(2)设直线1与曲线C相交于A、B两点,当α变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.抛物线y2=4x上的点P到它的焦点F的最短距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,且|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=2.求:
(1)($\overrightarrow{a}$-2$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$);
(2)|3$\overrightarrow{a}$-4$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$\overrightarrow a,\overrightarrow b$是单位向量,$\overrightarrow a•\overrightarrow b=0$,若向量c满足$|{\overrightarrow c-\overrightarrow a+\overrightarrow b}$|=1,则|$|{\overrightarrow c-\overrightarrow b}$|的取值范围是(  )
A.$[{\sqrt{2}-1,\sqrt{2}+1}]$B.$[{1,\sqrt{2}+1}]$C.[0,2]D.$[{\sqrt{5}-1,\sqrt{5}+1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知点A(1,0),过点A可作圆x2+y2+mx+1=0的两条切线,则m的取值范围是(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{a}$,满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,且对一切实数x,|$\overrightarrow{a}$+x$\overrightarrow{b}$|≥|$\overrightarrow{a}$+$\overrightarrow{b}$|恒成立,则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角的大小为$\frac{2π}{3}$.

查看答案和解析>>

同步练习册答案