精英家教网 > 高中数学 > 题目详情
17.下列说法正确的是(  )
A.?x,y∈R,若x+y≠0,则x≠1且y≠-1
B.a∈R,“$\frac{1}{a}<1$”是“a>1”的必要不充分条件
C.命题“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0”
D.设随机变量X~N(1,52),若P(X<0)=P(X>a-2),则实数a的值为2

分析 判断逆否命题的真假,可得原命题的真假;根据充要条件的定义,可判断B;写出原命题的否定,可判断C;根据正态分布的对称性,可判断D.

解答 解:若x+y≠0,则x≠1且y≠-1的逆否命题为“若x=1,或y=-1,则x+y=0”为假命题,故原命题为假命题,故A错误;
“$\frac{1}{a}<1$”?“a<0,或a>1”,故“$\frac{1}{a}<1$”是“a>1”的必要不充分条件,故B正确;
命题“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3≥0”,故C错误;
设随机变量X~N(1,52),若P(X≤0)=P(X>a-2),则a-2=2,则实数a的值为4,故D错误;
故选:B.

点评 本题以命题的真假判断与应用为载体,考查了四种命题,充要条件,命题的否定,正态分布等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.等比数列{an}的前n项和为Sn,已知a2a5=2a3,且a4与2a7的等差中项为$\frac{5}{4}$,则S4=(  )
A.29B.30C.33D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的短轴长为2,离心率为$\frac{{2\sqrt{5}}}{5}$,抛物线G:y2=2px(p>0)的焦点F与椭圆E的右焦点重合,若斜率为k的直线l过抛物线G的焦点F与椭圆E相交于A,B两点,与抛物线G相交于C,D两点.
(Ⅰ)求椭圆E及抛物线G的方程;
(Ⅱ)是否存在实数λ,使得$\frac{1}{{|{AB}|}}+\frac{λ}{{|{CD}|}}$为常数?若存在,求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是这三种分解中两数差的绝对值最小的,我们称3×4为12的最佳分解.当p×q(p≤q且pq∈N*,)是正整数n的最佳分解时,我们定义函数f(n)=q-p,例如f(12)=4-3=1.数列{f(3n)}的前100项和为350-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知m∈R,命题p:对任意实数x,不等式x2-2x-1≥m2-3m恒成立,若¬p为真命题,则m的取值范围是(-∞,1)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个小孩的现象普遍存在,某城市关系要好的A,B,C,D四个家庭各有两个小孩共8人,准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4名小孩不考虑位置),其中A户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有(  )
A.18种B.24种C.36种D.48种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.阅读下边的程序框图,运行相应的程序,若输出S的值为16,则输入m的值可以为(  )
A.4B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若集合A={x|log4x≤$\frac{1}{2}$},B={x|(x+3)( x-1)≥0},则A∩(∁RB)=(  )
A.(0,1]B.(0,1)C.[1,2]D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直x轴的直线交C于A,B两点,且|AB|=3,则C的方程为(  )
A.$\frac{x^2}{2}$+y2=1B.$\frac{x^2}{3}$+$\frac{y^2}{2}$=1C.$\frac{x^2}{4}$+$\frac{y^2}{3}$=1D.$\frac{x^2}{5}$+$\frac{y^2}{4}$=1

查看答案和解析>>

同步练习册答案