精英家教网 > 高中数学 > 题目详情
已知f(x)=m(x-2)(x+m+5),若存在x∈(-∞,4)使得f(x)>0,则实数m的取值范围
 
考点:二次函数的性质,函数单调性的性质
专题:函数的性质及应用
分析:根据题意得到不等式组,解出即可.
解答: 解:由题意得:m>0时,抛物线开口向上,
总会存在x∈(-∞,4)使得f(x)>0,
m<0时,只需f(4)=2m(m+9)>0,对称轴x=-
m+3
2
>4,
解得:m<-11,
故答案为:(-∞,-11)∪(0,+∞).
点评:本题考查了二次函数的性质,考查了函数的单调性,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,AB=BC,cosB=
7
8
,若以A、B为焦点的椭圆经过点C,则椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•4x-2x+1-a.
(1)若a=0,解方程f(2x)=-4;
(2)若函数f(x)=a•4x-2x+1-a在[1,2]上有零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,为奇函数的是(  )
A、f(x)=
x
B、f(x)=lnx
C、f(x)=2π
D、f(x)=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式||x|-1|≤2的解集为(  )
A、[-3,3]
B、[-1,3]
C、[-3,1]
D、[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:lg0.5+lg0.2=
 
3-72
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=logax(0<a<1)的导函数f′(x),A=f′(a),B=f(a+1)-f(a),C=f′(a+1),D=f(a+2)-f(a+1),则A,B,C,D,中最大的数是(  )
A、AB、BC、CD、D

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在区间(0,+∞)上为增函数的是(  )
A、y=log0.3(x+2)
B、y=3-x
C、y=
x+1
D、y=-x2

查看答案和解析>>

科目:高中数学 来源: 题型:

设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:
①若m⊥α,n∥α,则m⊥n;    
②若m∥α,n∥α,则m∥n;
③若α∥β,β∥γ,m⊥α,则m⊥γ;
④若α⊥γ,β⊥γ,则α∥β;
其中正确命题的序号是(  )
A、①和③B、②和③
C、②和④D、①和④

查看答案和解析>>

同步练习册答案