精英家教网 > 高中数学 > 题目详情
8.已知过点M(2,0)的动直线l交抛物线y2=2x于A,B两点,则$\overrightarrow{OA}$•$\overrightarrow{OB}$的值为(  )
A.2B.0C.4D.-2

分析 设出过点M的直线方程,和抛物线方程联立后利用根与系数关系得到A,B两点的横纵坐标的积,代入数量积的坐标公式得答案.

解答 解:设过点M(2,0)的直线l的方程为:x=ty+2,A(x1,y1),B(x2,y2).
联立$\left\{\begin{array}{l}{x=ty+2}\\{{y}^{2}=2x}\end{array}\right.$
得:y2-2ty-4=0.
∴y1+y2=2t,y1y2=-4.
x1x2=(ty1+2)(ty2+2)=t2y1y2+2t(y1+y2)+4=-2t2+2t2+4=4.
则$\overrightarrow{OA}$•$\overrightarrow{OB}$的=x1x2+y1y2=4-4=0.
故选:B.

点评 本题考查了直线与圆锥曲线的关系,考查了平面向量的数量积运算,涉及直线与圆锥曲线的关系问题,常采用联立方程组,化为关于x的方程后利用一元二次方程根与系数的关系解决,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知x∈[-1,0],θ∈[0,2π),二元函数$f(x,θ)=\frac{1+cosθ+x}{1+sinθ-x}$取最小值时,x=x0,θ=θ0则(  )
A.4x00=0B.4x00<0C.4x00>0D.以上均有可能.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{sin\frac{π}{2}x-1,x<0}\\{lo{g}_{a}x,x>0}\end{array}\right.$(a>0且a≠1)的图象上关于y轴对称的点至少有3对,则实数a的范围是(  )
A.(0,$\frac{\sqrt{5}}{5}$)B.($\frac{\sqrt{5}}{5}$,1)C.($\frac{\sqrt{3}}{5}$,1)D.(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}中,a1=1,${a_{n+1}}=\frac{a_n}{{1+3{a_n}}}$
(1)求证:数列$\left\{{\frac{1}{a_n}}\right\}$是等差数列;
(2)求数列{an}的通项公式;
(3)设数列{bn}满足:${b_n}=\frac{2^n}{a_n}$,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,圆O:x2+y2=16内的正弦曲线y=sinx,x∈[-π,π]与x轴围成的区域记为M(图中阴影部分),随机向圆O内投一个点P,记A表示事件“点P落在一象限”,B表示事件“点P落在区域M内”,则概率P(B|A)=$\frac{1}{2π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax-lnx-1.
(1)若函数f(x)在区间[1,+∞)上递增,求实数a的取值范围;
(2)求证:ln$\frac{n+1}{n}$<$\frac{1}{n}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l经过直线l1:2x-y-1=0与直线l2:x+2y-3=0的交点P,且与直线l3:x-y+1=0垂直.
(1)求直线l的方程;
(2)若直线l与圆C:(x-a)2+y2=8相交于P,Q两点,且$|PQ|=2\sqrt{6}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x,y的值如表所示,如果y与x呈线性相关且回归直线方程为$\widehat{y}$=$\widehat{b}$x+2,则$\widehat{b}$=(  )
x234
y546
A.3B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.$\int_1^2{\frac{2}{x}}dx$=(  )
A.2ln2B.-2ln2C.ln2D.-ln2

查看答案和解析>>

同步练习册答案