| A. | 2 | B. | 0 | C. | 4 | D. | -2 |
分析 设出过点M的直线方程,和抛物线方程联立后利用根与系数关系得到A,B两点的横纵坐标的积,代入数量积的坐标公式得答案.
解答 解:设过点M(2,0)的直线l的方程为:x=ty+2,A(x1,y1),B(x2,y2).
联立$\left\{\begin{array}{l}{x=ty+2}\\{{y}^{2}=2x}\end{array}\right.$
得:y2-2ty-4=0.
∴y1+y2=2t,y1y2=-4.
x1x2=(ty1+2)(ty2+2)=t2y1y2+2t(y1+y2)+4=-2t2+2t2+4=4.
则$\overrightarrow{OA}$•$\overrightarrow{OB}$的=x1x2+y1y2=4-4=0.
故选:B.
点评 本题考查了直线与圆锥曲线的关系,考查了平面向量的数量积运算,涉及直线与圆锥曲线的关系问题,常采用联立方程组,化为关于x的方程后利用一元二次方程根与系数的关系解决,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4x0+θ0=0 | B. | 4x0+θ0<0 | C. | 4x0+θ0>0 | D. | 以上均有可能. |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{\sqrt{5}}{5}$) | B. | ($\frac{\sqrt{5}}{5}$,1) | C. | ($\frac{\sqrt{3}}{5}$,1) | D. | (0,$\frac{\sqrt{3}}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 2 | 3 | 4 |
| y | 5 | 4 | 6 |
| A. | 3 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com