分析 函数f(x)=ax+2a+1在x∈[-1,1]内是单调函数,从而f(-1)f(1)<0,由此能求出实数a的取值范围.
解答 解:∵函数f(x)=ax+2a+1,当x∈[-1,1]时,f(x)的函数值有正有负,
∴$\left\{\begin{array}{l}{f(-1)=-a+2a+1<0}\\{f(1)=a+2a+1>0}\end{array}\right.$,
或$\left\{\begin{array}{l}{f(-1)=-a+2a+1>0}\\{f(1)=a+2a+1<0}\end{array}\right.$,
解得-1<a<-$\frac{1}{3}$,
∴实数a的取值范围是(-1,-$\frac{1}{3}$).
故答案为:(-1,-$\frac{1}{3}$).
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R(x0≠0),x0+$\frac{1}{{x}_{0}}$≤2 | B. | ?x0∈R(x0≠0),x0+$\frac{1}{{x}_{0}}$<2 | ||
| C. | ?x∈R(x≠0),x+$\frac{1}{x}$≤2 | D. | ?x∈R(x≠0),x+$\frac{1}{x}$<2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 高一年级 | 高二年级 | 高三年级 | |
| 女生 | x | y | 642 |
| 男生 | 680 | z | 658 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com