精英家教网 > 高中数学 > 题目详情
15.求函数y=-2sinx取最大值时的自变量x的集合.

分析 由条件利用正弦函数的定义域和值域求得函数y取最大值时的自变量x的集合.

解答 解:函数y=-2sinx的最大值为2,此时,sinx=-1,x=2kπ-$\frac{π}{2}$,k∈z,
故函数取得最大值时的自变量x的集合为{x|x=2kπ-$\frac{π}{2}$,k∈z}.

点评 本题主要考查正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.如图,以Ox为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P,Q,已知点P的坐标为(-$\frac{3}{5},\frac{4}{5}$),β=30°,则sin(α-β)=(  )
A.$\frac{4+3\sqrt{3}}{10}$B.$\frac{4\sqrt{3}+3}{10}$C.$\frac{4-3\sqrt{3}}{10}$D.$\frac{4\sqrt{3}-3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若圆x2+y2-4x+2y+m+6=0与y轴的两交点A,B位于原点的同侧,则实数m的取值范围是(  )
A.m<-1B.m>-6C.-6<m<-5D.m<-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD⊥DC,DC∥AB,PA=AB=2,AD=DC=1.
(1)求证:PC⊥BC;
(2)E为PB中点,F为BC中点,求四棱锥D-EFCP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若数列{an}满足:a1=$\frac{2}{3}$,an+1-an=$\sqrt{\frac{2}{3}({a}_{n+1}+{a}_{n})}$,则a2007=1343352.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M={x|x>$\frac{1}{x}$},N={x|y=$\frac{1}{\sqrt{1-lnx}}$},则M∩N=(  )
A.(1,e)B.(0,1)C.(1,e]D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某几何体的三视图如图所示,则该几何体的体积为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.$\underset{lim}{x→0}$$\frac{{∫}_{0}^{x}ln(cost)dt}{{x}^{3}}$=(  )
A.0B.$\frac{1}{6}$C.-$\frac{1}{6}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=alnx,a∈R.
(1)若曲线y=f(x)与f(x)与曲线g(x)=$\sqrt{x}$在交点处有共同的切线,求a的值;
(2)在(1)的条件下,求证:xf(x)$>\frac{x{e}^{1-x}}{2}$-1.

查看答案和解析>>

同步练习册答案