| A. | $\frac{4+3\sqrt{3}}{10}$ | B. | $\frac{4\sqrt{3}+3}{10}$ | C. | $\frac{4-3\sqrt{3}}{10}$ | D. | $\frac{4\sqrt{3}-3}{10}$ |
分析 利用任意角的三角函数的定义,求出α、β的三角函数值,然后利用两角差的正弦函数求解就.
解答 解:以Ox为始边作角α与β(0<β<α<π),
它们终边分别与单位圆相交于点P,Q,已知点P的坐标为(-$\frac{3}{5},\frac{4}{5}$),β=30°,
可得sinα=$\frac{4}{5}$,cosα=-$\frac{3}{5}$,
sin(α-β)=sinαcos30°-cosαsin30°=$\frac{4}{5}×\frac{\sqrt{3}}{2}+\frac{3}{5}×\frac{1}{2}$=$\frac{3+4\sqrt{3}}{10}$.
故选:B.
点评 本题考查三角函数的定义的应用,两角差的正弦函数,考查计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com