| A. | (0,2) | B. | (-∞,0] | C. | [2,+∞) | D. | [0,2] |
分析 由y=f(x)-a|x|=0得f(x)=a|x|,利用数形结合即可得到结论.
解答
解:由y=f(x)-a|x|=0得f(x)=a|x|
作出函数y=f(x),y=a|x|的图象,
当a=0时,两个函数的交点有3个,不满足条件,
当a<0时,两个函数的交点最多有2个,不满足条件,
当a>时,当x≤0时,两个函数一定有2个交点,
要使两个函数有4个交点,则只需要当x>0时,两个函数有2个交点即可,
当a≥2时,此时y=a|x|与f(x)有三个交点,
∴要使y=a|x|与f(x)有4个交点,
则0<a<2,
故选:A.
点评 本题主要考查函数零点个数的应用,利用数形结合是解决本题的关键,综合性较强,难度较大.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | ¬p∧q | C. | p∧¬q | D. | ¬p∧¬q |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com