精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\left\{\begin{array}{l}{(3-a)x-4,x≤6}\\{{a}^{x-6},x>6}\end{array}\right.$,设an=f(n),n∈N*,若{an}是递增数列,则实数a的取值范围是(2,3).

分析 由一次函数的性质可知:当n≤6,{an}是递增数列,即3-a>0,当x>7时,a>1,并且a7>a6,列方程组即可求得a的取值范围.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{(3-a)x-4,x≤6}\\{{a}^{x-6},x>6}\end{array}\right.$,
an=f(n),n∈N*
∴当1≤n≤6时,an=(3-a)n-3;
当n>6时,an=an-6
∵{an}是递增数列,
∴$\left\{\begin{array}{l}{3-a>0}\\{a>1}\\{{a}_{7}>{a}_{6}}\end{array}\right.$,即$\left\{\begin{array}{l}{a<3}\\{a>1}\\{a>(3-a)×6-4}\end{array}\right.$,解得:2<a<3
故答案为:(2,3).

点评 本题考查数列与函数的综合,易错点是忽视a7>a6,解题时要认真审题,注意分段函数的性质和应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,时速在[60,70)内的汽车辆数大约是(  )
A.8B.80C.65D.70

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率$e=\frac{1}{3}$,半焦距为c,抛物线x2=2cy的准线方程为y=-2,则椭圆的标准方程为(  )
A.$\frac{x^2}{12}+\frac{y^2}{8}=1$B.$\frac{x^2}{144}+\frac{y^2}{128}=1$C.$\frac{x^2}{128}+\frac{y^2}{144}=1$D.$\frac{x^2}{8}+\frac{y^2}{12}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知F1,F2为椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$的左、右焦点,M为椭圆上动点,有以下四个结论:
①|MF2|的最大值大于3;
②|MF1|•|MF2|的最大值为4;
③∠F1MF2的最大值为60°;
④若动直线l垂直y轴,交此椭圆于A、B两点,P为l上满足|PA|•|PB|=2的点,则点P的轨迹方程为$\frac{x^2}{2}+\frac{{2{y^2}}}{3}=1$或$\frac{x^2}{6}+\frac{{2{y^2}}}{9}=1$.
以上结论正确的序号为②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.数列{an}满足an+1+(-1)nan=2n-1,则{an}的前64项和为2080.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=x(x-m)2在x=-2处取得极大值,则m的值为(  )
A.-2或-6B.-2C.-6D.2或6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设Sn是数列{an}的前项和,且a1=1,an+1=an+2,则Sn=n2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,a,b,c分别是角A,B,C的对边,向量$\overrightarrow p$=(1,-$\sqrt{3}$),$\overrightarrow q$=(cosB,sinB),$\overrightarrow p∥\overrightarrow q$,且bcos C+ccos B=2asin A,则角C等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}{x^2}+5x+4(x≤0)\\ 2|x-2|(x>0)\end{array}\right.$,若函数y=f(x)-a|x|恰有4个零点,则a的取值范围是(  )
A.(0,2)B.(-∞,0]C.[2,+∞)D.[0,2]

查看答案和解析>>

同步练习册答案